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Changelog

2025-02-05: Version 1.1 → Version 2.0

We have updated the SDitH signature scheme to align it with the current literature. The first
version of the scheme utilized the MPCitH framework using linear multiparty computation,
optimized through hypercube [AGH+23] and threshold approaches [FR23b]. In the second
version, we have adopted the VOLEitH framework [BBD+23], which allows us to reduce the
signature size by more than half.

Additionally, we have modified the syndrome decoding field. Previously, we focused on F256

and F251; now, we are using the binary field F2, which offers a more conservative security
assumption.

Finally, we have redesigned the seed trees to incorporate AES-128 and Rijndael-256-256 as
symmetric primitives, moving away from Keccak-based hashes to enhance the speed of the
scheme.
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1 Introduction

This specification presents the Syndrome-Decoding-in-the-Head (SD-in-the-Head) digital signa-
ture scheme. The scheme is based on the hardness of the syndrome decoding (SD) problem
for random linear codes on a finite field. It consists in a zero-knowledge proof of knowledge
of a low-weight vector x solution of a syndrome decoding instance y = Hx, which is made
non-interactive using the Fiat-Shamir transform. This zero-knowledge proof relies on the prin-
ciple of “multiparty computation in the head” (MPCitH) originally introduced in [IKO+07]
and notably used by the Picnic signature scheme [ZCD+20], candidate to the previous NIST
call for post-quantum algorithms. The first version of SD-in-the-Head was based on the initial
scheme published in [FJR22] with further improvements from [AGH+22; FR22]. This second
version relies on a different proof system. This proof system is based on the VOLE-in-the-Head
framework [BBD+23] and its efficient application to the SD problem [OTX24; BBG+24].

For most applications of signatures, specially the ones that require certificates such as TLS,
the “public key + signature size” is thus a critical metric. The SD-in-the-Head signature scheme
presented in this specification achieves 3.7 KB for this metric in Category I, which is similar to
ML-DSA and less than halved compared to SLH-DSA (7.8 KB).

Organization of this specification

Section 2 gives a high-level description of the SD-in-the-Head-2 scheme. Section 3 provides a de-
tailed description of the key generation, signature and verification algorithms. This description
intends to allow a non-ambiguous implementation of the scheme. The selection of the parame-
ters is explained in Section 4 which also exhibits our proposed instances for the three considered
security levels. Section 4.4 provides performance figures for our different instances. The secu-
rity of the SD-in-the-Head signature scheme is analyzed in Section 5 while Section 5.2 further
evaluates the complexity of known attacks. We finally list some advantages and limitations of
the scheme in Section 7.

We welcome enquiries, comments, and corrections at

consortium@sdith.org

Implementations and material related to the SD-in-the-Head signature scheme will be uploaded
and maintained on:

https://github.com/sdith

consortium@sdith.org
https://github.com/sdith
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2 High-level description

The second version of the SD-in-the-Head signature scheme, namely SD-in-the-Head-2, relies
on the VOLE-in-the-Head framework [BBD+23] to build a 7-round zero-knowledge proof of
knowledge for the syndrome decoding problem, which is then transformed into a signature
scheme using the Fiat-Shamir heuristic [FS87]. The modeling used to handle the syndrome
decoding problem in the VOLEitH framework has been proposed independently into the two
articles [OTX24] and [BBG+24].

The following sections present the VOLE-in-the-Head framework using the PIOP formalism
and describe how SD-in-the-Head-2 is built from this framework and the modeling of [OTX24;
BBG+24].

2.1 VOLEitH in the PIOP formalism

The MPCitH paradigm [IKO+07] is a versatile method introduced in 2007 to build zero-
knowledge proof systems using techniques from secure multi-party computation (MPC). This
paradigm has been drastically improved in recent years and is particularly efficient to build
zero-knowledge proofs for small circuits such as those involved in (post-quantum) signature
schemes. The more recent MPCitH-based frameworks are the VOLE-in-the-Head (VOLEitH)
framework from [BBD+23] and the Threshold-Computation-in-the-Head (TCitH) framework
from [FR23b; FR23a].

In this subsection, we will describe the general proof system which SD-in-the-Head-2 relies
on. In what follows, we present this proof system using the formalism of the Polynomial Inter-
active Oracle Proofs (PIOP), as presented in [Fen24]. Indeed, while the TCitH and VOLEitH
frameworks were originally introduced using sharing-based and VOLE-based formalisms, respec-
tively, we present them within the PIOP formalism, which provides a unified and comprehensive
ground for these techniques.1

Let us assume that we want to build an interactive zero-knowledge proof with a prover
convincing a verifier that they know a witness w ∈ Fn

2 which satisfies some public polynomial
relations:

fj(w) = 0, ∀1 ≤ j ≤ m

where f1, . . . , fm are polynomials over F2 of total degree at most d. Let us consider a public
subset S ⊂ F2λ . The proof system we consider is the following:

1. For 1 ≤ j ≤ n, the prover samples a random degree-1 polynomials Pj such that Pj(0) = wj .
They also sample a random degree-(d−1) polynomial P0 ∈ F2λ [X]. They commit to those
polynomials.

2. The verifier chooses random coefficients γ1, . . . , γm from F2λ and sends them to the prover.
The latter then reveals the degree-(d− 1) polynomial Q(X) defined such that

Q(X) ·X = P0(X) ·X +
m∑
j=1

γj · fj(P1(X), . . . , Pn(X)). (1)

1In the TCitH framework, instead of performing operations over Shamir’s secret sharings, we can directly work
over their underlying polynomials. In the VOLEitH framework, instead of performing operations over VOLE
gadgets, we can directly work over their underlying degree-1 polynomials.
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3. The verifier samples a random evaluation point ∆ from the public set S ⊂ F2λ and sends
it to the prover. The latter then reveals the evaluations vi := Pi(∆), together with a proof
π that the evaluations are consistent with the commitment.

4. The verifier checks that the revealed evaluations are consistent with the commitment using
π and checks that we have

Q(∆) ·∆ = v0 ·∆+
m∑
j=1

γj · fj(v1, . . . , vn) . (2)

The above protocol assumes that the prover has a way to commit polynomials and to provably
open some evaluations later (while keeping hidden the other evaluations).

Security analysis. We can observe that the coefficient in front of the degree-0 monomial (i.e.
the constant term) in the right term of Equation (1) is

m∑
j=1

γj · fj(w1, . . . , wn) , (3)

so the degree-(d−1) polynomial Q is well-defined because this quantity is zero when the witness
w is valid. Let us assume that the prover is malicious, meaning that they do not know a valid
witness. It implies that there exists j∗ such that fj∗(w) ̸= 0. In that case, the probability
that there exists some Q such that Equation (1) holds is at most 1/2λ over the randomness
of γ1, . . . , γm, because the coefficient (3) is zero only with probability 1/2λ. If Equation (1)
does not hold, the probability that the check in Equation (2) passes is at most d/|S|, since the
degree-d polynomial relation

Q(X)−

P0 +
m∑
j=1

γj · f [h]j (X,P1(X), . . . , Pm(X))

 ̸= 0

would have at most d roots (and so the random challenge ∆ should be among those roots). So,
the proof system is sound, with a soundness error of 1

2λ
+
(
1− 1

2λ

)
· d
|S| . Moreover, assuming that

the commitment scheme is hiding, we can observe that the interactive proof is zero-knowledge
since

• revealing Q(X) leaks no information about the secret thanks to the random polynomial
P0, and

• revealing one evaluation of the polynomials P1, . . . , Pn leaks no information about the
leading term thanks to the randomness used to build those polynomials.

In what follows, we describe how to commit polynomials such that we can later open some
evaluations.

The TCitH-GGM approach. Thanks to ideas from [ISN89; CDI05], the TCitH framework [FR23a]
shows that we can commit n̄ random polynomials using seed trees in such a way that the com-
mitter can later open one evaluation among a set of N while keeping the others hidden. Here
is the commitment process for degree-1 polynomials:
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1. One uses an all-but-one vector commitment (AVC) to sample and commitN seeds seed1, . . . , seedN .

2. One expands each seedi as wrnd,i := PRG(seedi) ∈ Fn̄
q for i ∈ {1, . . . , N}, where PRG is a

pseudorandom generator.

3. One computes

wacc ←
N∑
i=1

wrnd,i ∈ Fn̄
2

wbase ← −
N∑
i=1

ϕ(i) · wrnd,i ∈ Fn̄
2κ

where ϕ : {1, . . . , N} → F2κ is a public one-to-one function.

4. One defines Pj as
Pj(X) = (wacc)j ·X + (wbase)j

for all j.

This commitment procedure has the main advantage to enable the prover to reveal one evalua-
tion {Pj(ϕ(i

∗))}j for i∗ ∈ [1 : N ] while keeping secret the coefficients wacc and wbase: they just
need to reveal all the {seedi}i except seedi∗ (by opening the AVC scheme) and the verifier will
be able to compute Pj(ϕ(i

∗)) as

N∑
i=1,i ̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j with wrnd,i := PRG(seedi).

Indeed, we have that

N∑
i=1,i ̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j = ϕ(i∗) ·
N∑
i=1

(wrnd,i)j −
N∑
i=1

ϕ(i) · (wrnd,i)j

= ϕ(i∗) · (wacc)j + (wbase)j = Pj(ϕ(i
∗)).

We can use this commitment procedure to commit to the polynomials in Step 1 of the proof
system. We just need to rely on auxiliary values to enforce some coefficients of Pj . Because the
public set would be of size N (S := {ϕ(1), . . . , ϕ(N)}), the resulting 5-round zero-knowledge
proof system has a soundness error of

1

2λ
+

(
1− 1

2λ

)
· d
N

,

and one needs to rely on protocol repetitions to achieve the desired security. Indeed, the
computational complexity is linear in N and so we can not take N exponentially large. To have
a λ-bit security we need to repeat the protocol τ times in parallel, such that (d/N)τ ≤ 2−λ.
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The VOLEitH approach. In the VOLEitH framework, the commitment scheme enables the
opening of an evaluation from an exponentially-large set S, thus avoiding parallel repetitions
of the PIOP. As the TCitH framework, the VOLEitH approach starts by committing τ sets of

polynomials {P (1)
i }i, . . . , {P

(τ)
i }i in parallel (exactly using the same commitment procedure).

However, instead of considering those sets of polynomials individually as in the TCitH frame-
work, the VOLEitH approach consists in “merging them” into a polynomial over an extension
field of size greater that N τ .

This merge works as follows. Consider τ polynomials P (1), . . . , P (τ) encoding a witness coef-

ficient in their leading terms: P (e) = w ·X + w
(e)
base, where w ∈ F2 and w

(e)
base ∈ F2κ for every e.

These can be merged into the polynomial:

P (X) = w ·X + ψ(w
(1)
base, . . . , w

(τ)
base)︸ ︷︷ ︸

∈F
2λ

where τ · κ ≤ λ and ψ is an F2-morphism from (F2κ)
τ to F2λ . The key observation is that we

can open an evaluation P (X) into any point of

E :=
{
ψ(v1, . . . , vτ ) | (v1, . . . , vτ ) ∈ {ϕ(1), . . . , ϕ(N)}τ

}
⊂ F2λ

by opening evaluations of P (1), . . . , P (τ) on the small domain. Specifically, we compute P (∆)
where ∆ = ψ

(
ϕ(i(1)), . . . , ϕ(i(τ))

)
for some (i(1), . . . , i(τ)) ∈ {1, . . . , N}τ as

ψ
(
P (1)(ϕ(i(1))), . . . , P (τ)(ϕ(i(τ)))

)
.

Indeed, we have

ψ
(
P (1)(ϕ(i(1))), . . . , P (τ)(ϕ(i(τ)))

)
= ψ

(
w · ϕ(i(1)) + w

(1)
base, . . . , w · ϕ(i

(τ)) + w
(τ)
base

)
= w · ψ

(
ϕ(i(1)), . . . , ϕ(i(τ))

)
+ ψ

(
w

(1)
base, . . . , w

(τ)
base

)
= w ·∆+ ψ

(
w

(1)
base, . . . , w

(τ)
base

)
= P (∆) .

So, instead of running the proof system τ times in parallel over the polynomials P (1), . . . , P (τ),
one runs it once over the polynomial P . Since the evaluation set S is now of size N τ , the
resulting soundness error is thus

1

2λ
+

(
1− 1

2λ

)
· d
N τ

.

Let us remark that the merge requires the polynomials P (1), . . . , P (τ) to have the same leading
term. Therefore, the prover should convince the verifier that those τ polynomials have the same
leading term. Let us assume that we work with vector polynomials, i.e. P (e) is of the form

P (e) = w ·X +w
(e)
base for some w ∈ Fn̄

2 and w
(e)
base ∈ Fn̄

2λ
. To convince the verifier, the prover will

run the following consistency check. After committing to the τ polynomials, the prover gets a

random matrix M ∈ F(λ+B)×n̄
2 from the verifier and then reveals the polynomial

R(e)(X)←M · P (e)(X)

for all e ∈ {1, . . . , τ}. The verifier can then check that the leading terms of R(1)(X), . . . , R(τ)(X)
are indeed the same, and, after the opening of the evaluations, they can check that

R(e)(ϕ(i(e))) = M · P (e)(ϕ(i(e)))
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for all e.
The probability that there exists e1 and e2 such that the leading terms of R(e1)(X) and

R(e2)(X) are the same, while those of P (e1)(X) and P (e2)(X) are different is at most
(
τ
2

)
· εcheck

where εcheck := maxv ̸=u PrM←$[Mv = Mu]. The parameter B is chosen such that
(
τ
2

)
·εcheck ≤

2−λ. Let us note that this check leaks information about the leading term w. To prevent leakage
about secret values, the λ + B last coefficients of w can be chosen at random and M can be
defined in the form M = [M ′ | Iλ+B]. Because of this consistency check which relies on a
random challenge from the verifier, the resulting zero-knowledge protocol has 7 rounds.

Witness as constant term. In the proof system described at the beginning of this section, we
use some polynomials P1, . . . , Pn such that Pj(0) = wj for all j, meaning the witness is encoded
as the constant term of those polynomials. On the other hand, the VOLEitH commitment
procedure merges those polynomials assuming that the witness is encoded as their leading term.
In its original description, the TCitH framework relies on the former encoding (as for original
Shamir’s secret sharing) but it can easily support the latter encoding. On the other hand, the
VOLEitH approach is constrained to use the leading-term encoding because ψ is F2-linear and
so the merging strategy requires that the leading term lives in F2 (and not in F2λ).
One advantage of the constant-term encoding is to be less expensive in terms of field multi-

plications. Because of the relative heaviness of the considered modelling for SD-in-the-Head-2
we propose the following tweak to support VOLEitH merging procedure while still encoding the
witness in the constant term. We use the VOLEitH approach to commit to P̂ (X) := X ·P (1/X).
If the witness is encoded as the constant term of P , then it is encoded as the leading term of P̂ .
To open the evaluation P (∆), the prover simply opens the evaluation P̂ (∆inv) with ∆inv := ∆−1,
which allows the verifier to retrieve P (∆) as P (∆) = ∆ · P̂ (∆inv).

2.2 Overview of SD-in-the-Head-2

The SD-in-the-Head-2 scheme relies on the proof system described in Section 2.1, using the
VOLE-in-the-Head approach, which enables proving knowledge of a witness satisfying a set of
degree-d polynomial constraints. In what follows, we explain how we express a syndrome de-
coding instance as such a system of degree-d constraints, in a way that aims for small witness
size (and hence small signature size). We then describe the optimlized all-but-one vector com-
mitment our scheme relies on. We finally address the transformation of the obtained 7-round
interactive proof into a signature scheme using the standard Fiat-Shamir transformation.

SD modeling. We need to express a syndrome decoding instance as a system of degree-d
constraints. To proceed, we will rely on the syndrome decoding modeling proposed by [OTX24;
BBG+24]. The high-level idea is to consider a structured syndrome decoding problem, more
precisely the regular syndrome decoding problem (RSD). However, as suggested in [BBG+24],
we use RSD parameters for which we have a provable security reduction to a secure unstructured
syndrome decoding instance, using the reduction from [FJR22]. Therefore, the security of SD-in-
the-Head-2 still inherits from the conservative security of the oldest hard problem of code-based
cryptography, namely the syndrome decoding problem for (unstructured) random linear codes.

Given a matrix H ∈ F(n−k)×n
2 and a syndrome vector y ∈ Fn−k

2 , the RSD problem consists
in finding a vector x ∈ Fn

2 such that

• x satisfies the linear relation y = Hx, and
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• x is regular, meaning that it is the concatenation of w elementary vectors e1, . . . , ew of
size n

w (i.e. vector with n
w − 1 coefficients 0 and one coefficient 1).

To express an RSD instance as a contraint system, [OTX24; BBG+24] proposes to rely on a
compression version of x := (e1 ∥ . . . ∥ ew): their idea consists in deriving each vector ei as a
tensor product of log2

(
n
w

)
elementary vectors of size 2:

ei ←

(
bi,1

1− bi,1

)
⊗

(
bi,2

1− bi,2

)
⊗ . . .⊗

(
bi,log2(n/w)

1− bi,log2(n/w)

)
∈ Fn/w ,

where bi,1, . . . , bi,log2(n/w) is the binary decomposition of the non-zero positions of ei. In that

case, the jth coordinate of ei is derived as

(ei)j ←
log2(n/w)∏

k=1

(bi,k ⊕ bitk(j)) ,

where bitk(j) is the k
th bit of the integer j and · is the negation function. By doing this, we do

not need to check that the ei’s are elementary since this property is guarantee by design (i.e. a
vector ei satisfying the above equation is always an elementary vector, whatever are the values
bi,1, . . . , bi,log2(n/w)). This construction leads to a witness of w · log2

(
n
w

)
bits which is verified

using a system of degree-d constraints, with d = log2
(
n
w

)
. We thus obtain a small witness, but

constraints of relatively high degree. We can relax [OTX24; BBG+24]’s idea with the following
tweak. We build each elementary vector ei as a tensor product of d elementary vectors of size
µ1, . . . , µd (with µ1 · µ2 · . . . · µd = n/w). We obtain a witness of bit-size

d∑
i=1

(µi − 1) ,

and a system of degree-d constraints. By taking µi a bit larger than 2 (for example, 4), we
only slightly increase the witness size, but significantly we reduce the constraints’ degree. On
the other hand, by using elementary vectors of size µi > 2, we need to add further (degree-2)
constraints to prove that the ei’s are elementary vectors.
Specifically, the signer shall prove that they know bits {bi,j,k}1≤i≤w,1≤j≤d,1≤k≤µj−1 such that

• we have y = Hx with x := (e1 ∥ . . . ∥ ew), where ei is defined as

ei ←


bi,1,1

bi,1,2
...

bi,1,µ1−1

1−
∑

k bi,1,k

⊗


bi,2,1

bi,2,2
...

bi,2,µ2−1

1−
∑

k bi,2,k

⊗ . . .⊗


bi,d,1

bi,d,2
...

bi,d,µd−1

1−
∑

k bi,d,k

 ∈ Fn/w

for all 1 ≤ i ≤ w;

• for all pairs (i, j), (bi,j,1, . . . , bi,j,µ1) has at most one non-zero coordinate, implying that
bi,j,1

bi,j,2
...

bi,j,µj−1

1−
∑

k bi,j,k
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is an elementary vector.

AVC Optimizations. As explained in Section 2.1, the proof system starts by committing in-
dependently to τ vector polynomials P (1), . . . , P (τ). It implies that we use τ all-but-one vector
commitments, where each of them uses of GGM tree of N leaves. Therefore, we can optimize
those all-but-one vector commitments by using a so-called batched all-but-one vector commit-
ment (BAVC) scheme, which aims to be more efficient than τ independent AVC schemes. In
SD-in-the-Head-2, we use the “one-tree” BAVC scheme described in [BBM+24]. Instead of con-
sidering τ independent GGM trees of N leaves in parallel, this scheme relies on a unique large
GGM tree of τ · N leaves where the ith seed of the eth parallel repetition is associated to the
(e ·N + i)th leaf of the large GGM tree. As explained in [BBM+24], “opening all but τ leaves
of the big tree is more efficient than opening all but one leaf in each of the τ smaller trees,
because with high probability some of the active paths in the tree will merge relatively close to
the leaves, which reduces the number of internal nodes that need to be revealed.” Moreover, the
authors of [BBM+24] suggest improving the previous approach by rejecting certain bad chal-
lenges for which the paths did not sufficiently merged. When the BAVC opening is such that
the number of revealed nodes in the sibling paths exceeds a fixed threshold Topen, the opening
is considered as a failure (i.e. it returns ⊥), forcing the prover/signer to recompute another
opening challenge by re-hashing with an incremented counter. This process is done until the
number of revealed nodes is less than Topen. For example, if we consider N = 256 and τ = 16,
the number of revealed nodes is smaller than (or equal to) Topen := 110 with probability ≈ 0.2
(which is to be compared to τ · log2(N) = 128 nodes for the sibling paths of separated trees).
The selected value of Topen induces a rejection probability prej = 1 − 1/θ, for some θ ∈ (0,∞),
hence the signer needs to perform an average of θ hash computations for the opening challenge
(instead of 1). While this strategy decreases the challenge space by a factor θ, it does not
change the average number of hashes that must be computed in a forgery attempt against the
signature scheme (since the latter is multiplied by θ). As noticed by the authors of [BBM+24],
this strategy can be thought of as loosing log2 θ bit of security (because of a smaller challenge
space) which are regained thanks to the implicit proof-of-work for finding a good challenge.

Fiat-Shamir transformation & grinding. To obtain the SD-in-the-Head-2 signature scheme
from the SD-in-the-Head-2 zero-knowledge proof of knowledge, we rely on the Fiat-Shamir trans-
formation [FS87] to remove the prover-verifier interactions. We further proceed with adding a
random salt to enforce domain separation between signatures (and avoid seed collision issues).
Each verifier challenge is computed as the output of an extendable-output function (XOF) which
takes as input the data that the prover would send before receiving that challenge in an inter-
active protocol. The SD-in-the-Head-2 protocol is a 7-round proof system, so there are three
challenges: the random matrix M of the consistency check, the random coefficients γ1, . . . , γm
to batch the polynomial constraints, and the evaluation point ∆ for the opened evaluations. In
SD-in-the-Head-2 scheme, we use a grinding proof-of-work in the Fiat-Shamir hash computation
of the last challenge, as proposed in [BBM+24]. Together with the opening challenge, the signer
samples a wpow-bit value vpow and keeps the opening challenge only if this additional value
is zero, with wpow a parameter of the scheme. If this additional value is non-zero, then the
signer increments a counter and recompute another opening challenge with another wpow-bit
value. This process is repeated until obtaining a grinding value equal to zero. Let us remark
that we can use the same counter for this grinding process and the rejection process due to the
fact that the [BBM+24]’s BAVC scheme might return ⊥ when the number of revealed nodes is
larger than the chosen threshold Topen. This grinding tweak increases the cost of hashing the
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last challenge by a factor 2wpow and hence increases the soundness security of wpow bits. As a
result, we can take smaller parameters (N, τ) for the large tree, namely parameters achieving
λ− wpow bits of security instead of λ. More precisely, the parameters N , τ and wpow must be
chosen such that (d/N τ ) · 2−wpow ≤ 2−λ to achieve a λ-bit security.
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3 Detailed algorithmic description

3.1 Main algorithms

3.1.1 Key generation

The key generation consists in sampling a regular syndrome decoding instance. The public
key is the instance (H,y) while the secret key is composed of the instance and the associated
solution (H,y,x). Moreover, we consider that H is in standard form, i.e. H := (H ′ | In−k).

We describe in Algorithm 1 the subroutine ExpandWitness which expands a λ-bit seed into a
regular syndrome decoding solution x and builds the SD-in-the-Head-2 witness wit, where wit
encodes the positions of the non-zero coefficients. To proceed, we first sample the position of
the non-zero coefficients in each solution chunk of size m (Line 2) from which we derive the
regular SD solution x. Then we build the witness by encoding the positions. As explained in
Section 2.2, we write each chunk as the tensor product of d elementary vectors of size µ1, . . . , µd.
We omit the last coordinate of all the subvectors (Line 11), since it can be deduced from the
others.

Algorithm 1 ExpandWitness

Input: a seed seed

▷ Expand the RSD solution

1: prg← PRG.Init(seed)
2: pos← SampleIntegers(prg, {0, . . . ,m− 1}, w) ▷ pos ∈ {0, . . . ,m− 1}w
3: for i from 0 to w − 1 do
4: chunk[i] := ElementaryVector(m, pos[i])

5: x← (chunk[0] ∥ . . . ∥ chunk[w − 1]) ▷ x ∈ Fn
q

▷ Build the witness

6: wit← ∅
7: for i from 0 to w − 1 do
8: for j from 0 to d− 1 do
9: (pos[i], p)← (pos[i] // µj , pos[i] % µj)

10: e := (e0, . . . , eµj−1)← ElementaryVector(µj , p)
11: wit← wit ∥ (e0, . . . , eµj−2)

12: return (x,wit)

The key generation is described in Algorithm 2. It first samples two seeds seedsk and seedpk.
The first seed seedsk is used to expand the syndrome decoding solution x and the SD-in-the-Head
witness wit through the subroutine ExpandWitness. The second seed seedpk is used to generate
the matrix H ′ which defines the parity check matrix H := (H ′ | In−k). The algorithm then
builds the public key by packing the seed seedpk which encodes H and the vector y := Hx.
It also builds the secret key by packing the seed seedpk, the vector y and the SD-in-the-Head-2
witness wit.
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Algorithm 2 SD-in-the-Head-2 – Key Generation

1: seedsk ← {0, 1}λ
2: seedpk ← {0, 1}λ
3: (x,wit)← ExpandWitness(seedsk) ▷ x ∈ Fn

q , |wit|2 = w · ((µ1 − 1) + . . .+ (µd − 1))

4: H ′ ← ExpandH(seedpk) ▷ H ′ ∈ F(n−k)×k
q

5: y = [H ′ | In−k] · xA ▷ y ∈ Fn−k
q

6: pk = Serialize(seedpk,y)
7: sk = Serialize(seedpk,y,wit, seedsk)
8: return (pk, sk)

3.1.2 Signing

The signing algorithm is described in Algorithm 3. After expanding the secret key as (H ′,y,wit),
it samples a λ-bit salt which provides domain separation between signatures and a λ-bit root
seed from which all the pseudo-randomness of the scheme will be derived. Then, using the
routine BLC.Commit, it commits to random degree-1 vector polynomials Pwit(X) ∈ (F2λ [X])|wit|

and Prnd(X) ∈ (F2λ [X])(d−1)λ such that Pwit(0) = wit and Prnd(0) is uniformly sampled from

F(d−1)λ
2 . While Pwit encodes the witness in the PIOP protocol, Prnd aims to prevent witness

leakage in the protocol. The hash digest hlines is the BLC commitment to these polynomials.
After the commitment phase, it runs the PIOP protocol using the routine PIOP.Prover.Run,
namely it computes the degree-d polynomial Pα such that

Pα(X) = P0(X) ·X +
m∑
j=1

γj · fj(P1(X), . . . , P|wit|(X)).

where

• P1, . . . , P|wit| are the witness polynomial, i.e. Pwit :=
(
P1, . . . , P|wit|

)
;

• P0 is the degree-(d− 1) masking polynomial built as

P0(X) :=
d−1∑
i=1

 λ∑
j=1

δj−1 · Prnd,i,j(X)

 ·Xi−1

with Prnd := (Prnd,1,1, . . . , Prnd,1,λ, . . . , Prnd,d−1,1, . . . , Prnd,d−1,λ) and (1, δ, δ2 . . .) is a F2-
basis of F2λ ;

• {fj}j are the degree-d polynomial contraints that the SD-in-the-Head-2 witness wit should
satisfy (c.f. Section 2.2).

By design, Pα satisfies Pα(0) = 0, so we can write Pα as
∑d

i=1 αi · Xi (i.e. without constant
term). Then, the signing algorithm hashes Pα (by hashing its coefficients), samples a random
evaluation point ∆ ∈ F2λ and opens the polynomial evaluations Pwit(∆) and Prnd(∆) using
the routine BLC.OpenRandomEvaluation. By “opening”, we mean that the signer provides an
opening data pdecom that enables the verifier to recover pwit := Pwit(∆) and prnd := Prnd(∆).
The verifier can then check that those evaluations are consistent with the BLC commitment
hlines.



The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 13

Algorithm 3 SD-in-the-Head-2 – Signing Algorithm

Input: a secret key sk and a message msg ∈ {0, 1}∗

▷ Phase 0: Initialization.

1: (seedpk,y,wit, seedsk)← Deserialize(sk, {0, 1}λ,Fn−k
q ,F|wit|2 )

2: H ′ ← ExpandH(seedpk) ▷ H ′ ∈ F(n−k)×k
q

3: salt← {0, 1}λ
4: rseed← {0, 1}λ

▷ Phase 1: Build & Commit Witness/Masking Polynomials.

5: (Pwit,Prnd, hlines, key, aux)← BLC.Commit(salt, rseed,wit) ▷ Pwit(0) = wit

▷ Phase 2: PIOP Protocol (prover side).

6: Pα ← PIOP.Prover.Run(Pwit,Prnd, hlines, (H
′,y)) ▷ Pα(X) ∈ F(≤d)

2λ
[X]

7: hpiop = Hashpiop(pk, hlines, α1, . . . , αd,msg) ▷ Pα(X) =
∑

0<i≤d αi ·Xi

▷ Phase 3: Open random evaluations.

8: pdecom← BLC.OpenRandomEvaluation(key, hpiop)
9: σ = Serialize (salt ∥ hpiop ∥ aux ∥ pdecom ∥ (α1, α2, . . . , αd))

10: return σ

3.1.3 Verification

The verification algorithm is described in Algorithm 4. After expanding the public key as (H ′,y)
and parsing the signature, it recovers the evaluations pwit := Pwit(∆) and prnd := Prnd(∆) from
pdecom as well as hhlines using the routine BLC.RecomputeEvaluation. If the recovered hhlines
does not match the value of the signing algorithm, the later verification hpiop=h

′
piop will fail

with overwhelming probability, since hhlines is input of the hash computation of h′piop. At the
same time, BLC.RecomputeEvaluation outputs the random evaluation point ∆. The verification
algorithm then deduces the evaluation pα = Pα(∆) using the routine PIOP.ComputeOutput and
check that it is consistent with the polynomial Pα included in the signature. Finally, it checks
that the polynomial Pα is the same as in the signing algorithm by comparing the hash digests.
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Algorithm 4 SD-in-the-Head-2 – Verification Algorithm

Input: a public key pk, a signature σ and a message msg ∈ {0, 1}∗

▷ Phase 0: Initialization.

1: (salt ∥ hpiop ∥ aux ∥ pdecom ∥ (α1, α2, . . . , αd))← Deserialize(σ)
2: (seedpk,y)← Deserialize(pk)

3: H ′ ← ExpandH(seedpk) ▷ H ′ ∈ F(n−k)×k
q

▷ Phase 1: Recomputing Evaluation.

4: (∆,pwit,prnd, hlines)← BLC.RecomputeEvaluation(aux, pdecom, salt, hpiop)
5: ▷ pwit := Pwit(∆),prnd := Prnd(∆)
6: if ∆ = ⊥ then
7: return Reject

▷ Phase 2: PIOP Protocol (verifier side).

8: pα ← PIOP.Verifier.Run(∆,pwit,prnd, hlines, (H
′,y)) ▷ pα := Pα(∆)

9: h′piop = Hashpiop(pk, hlines, α1, . . . , αd,msg) ▷ Pα(X) =
∑

0<i≤d αi ·Xi

▷ Phase 3: Verification.

10: if hpiop ̸= h′piop or pα ̸=
∑d

i=1 αi ·∆i then
11: return Reject

12: return Accept
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3.2 Subroutines

3.2.1 Symmetric cryptography primitives

The SD-in-the-Head-2 signature scheme relies on three types of symmetric cryptography prim-
itives: a hash function (Hash), and an extendable output function (XOF), and a block cipher
(Enc). The instantiations of these primitives are summarized in Table 1.

Table 1: Symmetric cryptography primitives for NIST Security Categories I, III, and V. For
Category III, the block cipher is defined as a truncated version of Rijndael-256-256.

Category I Category III Category V

Enc AES-128 Rijndael-256-256* Rijndael-256-256

Hash SHAKE-128 SHAKE-256 SHAKE-256

XOF SHAKE-128 SHAKE-256 SHAKE-256

3.2.2 Pseudo-randomness generation

Several subroutines used in the SD-in-the-Head-2 signature schemes involve pseudorandomness
generation from a seed. Several seeds are expanded from a master seed in the key generation and
in the signature algorithm (to generate the lines). One also needs to sample sequences of field
elements from a seed in the key generation, the signature and verification algorithms. Finally
pseudorandomness generation is also involved to derive the challenges (consistency challenge,
batching challenge, and evaluation challenge) from the Fiat-Shamir hashes haux, hlines and hpiop.

Pseudo-random generator. Most the pseudorandomness (everything except the Fiat-Shamir
challenges) in SD-in-the-Head-2 is generated through a pseudo-random generator (PRG). Such
a function takes a λ-bit seed seed ∈ {0, 1}λ and produces an arbitrary-long output bit-string
y ∈ {0, 1}∗ whose length is tailored to the requirements of the application. Formally, a PRG is
equipped with two routines: PRG.Init(x) initializes the PRG state with the input x ∈ {0, 1}∗.
Once initialized, the PRG can be queried with the routine PRG.GetByte() to generate the next
byte of the output y associated to x. In our context, we use a block cipher Enc in counter
mode as a secure pseudorandom generator (PRG). The concrete instance of the block cipher
we use in the SD-in-the-Head-2 scheme is given in Section 3.2.1. The initialization function
PRG.Init(x, salt) might take an additional input salt, which will correspond to the nounce for
the counter mode. Regarding Category III, since we use Rijndael-256-256 as mentioned in
Section 3.2.1, we pad the input seed and salt with 64 least significant zero bits, and the output
of the PRG corresponds to the output blocks of the cipher (without any truncation).

Extendable output function. The pseudorandomness in SD-in-the-Head-2 for Fiat-Shamir
challenges is generated through an extendable output hash function (XOF). Such a function
takes an arbitrary-long input bit-string x ∈ {0, 1}∗ and produces an arbitrary-long output bit-
string y ∈ {0, 1}∗ whose length is tailored to the requirements of the application. Formally,
a XOF is equipped with two routines: XOF.Init(x) initializes the XOF state with the input
x ∈ {0, 1}∗. Once initialized, the XOF can be queried with the routine XOF.GetByte() to gen-
erate the next byte of the output y associated to x. The concrete instance of the XOF we use
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in the SD-in-the-Head-2 scheme is given in Section 4.3. In our context, we use the XOF as a
secure pseudorandom generator (PRG) which tolerates input seeds of variable lengths.

Sampling (a vector of) field elements. The subroutine SampleFieldElements(src,F, n) samples
n pseudorandom elements from F using the PRG/XOF src. It assumes that the XOF/PRG
has been previously initialized. The implementation of the SampleFieldElements routine use
the following process. It first generates from src a stream of bytes B1, . . . , Bn′ for some
n′ ≥ (n · log2 |F|)/8. Those bytes are converted into n field elements as follows:

• For Fq = F2: The byte Bi is interpreted as 8 field elements bi,0, . . . , bi,7, such that Bi =∑
j 2

j · bi,j . Interpreted all the bytes leads to a vector (b1,0, . . . , b1,7, . . . , bn′,0, . . . , bn′,7)
and the procedure returned the n first coordinates as the sampled field elements.

• For Fq = F2λ : The ith pack of λ
8 consecutive bytes is returned as the ith sampled field

element.

Sampling integers. The subroutine SampleIntegers(src, {0, . . . ,m − 1}, n) samples n pseudo-
random integers from {0, . . . ,m − 1} using the XOF/PRG src, where m ≤ 232. It assumes
that the XOF/PRG has been previously initialized. The implementation of the SampleIntegers
routine uses the principle of rejection sampling. While denoting tmax as the largest multiple of
m smaller then (or equal to) 232, the procedure goes as follows:

1: i = 1
2: while i ≤ n do
3: for 0 ≤ j < 4 do
4: Bj ← src.GetByte()

5: v← B0 + 256 ·B1 + 2562 ·B2 + 2563 ·B3

6: if v ∈ {0, 1, . . . , tmax − 1} then
7: fi = B % m; i ++

8: return (f1, . . . , fn)

The number of generated bytes which are necessary to complete the process is non-determinisitic.

Expansion of the parity-check matrix. The subroutine ExpandH takes as input λ-bit seed
seedH and returns an (n−k)×k matrix of elements of Fq. This generated matrix is the random
part H ′ of the parity-check matrix in standard form H = (H ′|In−k). A call to ExpandH(seedH)
generates H ′ row-wise as follows:

1: prg← PRG.Init(seedH)

2: for i from 0 to k − 1 do

3: colsH′[i]← SampleFieldElements(prg,Fq, n− k)

4: H ′ ← [colsH′[0] | . . . | colsH′[k − 1]] ▷ H ′ ∈ F(n−k)×k
2

5: return H ′

Seed expansion (GGM Tree). The subroutine ExpandSeed expands a salt, a parent seed and an
index into two seeds. It is used to expand GGM trees. Specifically, a call to ExpandSeed(salt, seed, idx)
runs the following procedure for Categories I and V:
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1: left← Encλ(key = seed, ptx = salt⊕MapToBits(2 · idx))
2: right← Encλ(key = seed, ptx = salt⊕MapToBits(2 · idx+ 1))

3: return (left, right)

where MapToBits computes the bitstring that corresponds to the binary decomposition of the
input integer in a little-endian order. For Category III, a call to ExpandSeed(salt, seed, idx) runs
as follows:

1: left← Rijndael-256-256(key = (064 ∥ seed), ptx = (064 ∥ salt)⊕MapToBits(2 · idx))
2: right← Rijndael-256-256(key = (064 ∥ seed), ptx = (064 ∥ salt)⊕MapToBits(2 · idx+1))

3: return (GetMSB192(left),GetLSB192(right))

where GetMSB192 and GetLSB192 return respectively the 192 most significant bits and the 192
less significant bits.

Expansion of consistency check challenge. The subroutine ExpandConsistencyChallenge ex-
pands the first Fiat-Shamir hash haux into the matrix M used for the consistency check. It
consists of the following steps:

1: xof← XOF.Init(haux)

2: for i from 0 to ℓ− 1 do

3: colsM[i]← SampleFieldElements(xof,F2, λ+B)

4: M ← [colsM[0] | . . . | colsM[ℓ− 1]] ▷ M ∈ F(λ+B)×ℓ
2

5: return M

Expansion of batching challenge. The subroutine ExpandBatchingChallenge expands the sec-
ond Fiat-Shamir hash hlines into the batching challenges (γ′,γ). It consists of the following
steps:

1: xof← XOF.Init(hlines)

2: γ′ ← SampleFieldElements(xof,F2λ , w · d′), where d′ = #{j : µj > 2}
3: γ ← SampleFieldElements(xof,F2λ ,

⌈
n−k
λ

⌉
)

4: return (γ′,γ)

Expansion of evaluation-opening challenge. The subroutine ExpandEvaluationChallenge ex-
pands the third Fiat-Shamir hash hpiop into the evaluation-opening challenges i∗[1], . . . , i∗[τ],
where i∗[e] is the hidden seed which should remain hidden for execution e. It also expands a
wpow-bit grinding digest vpow, which will lead to a challenge rejection when it is non-zero. This
subroutine takes as input the hash hpiop and a 32-bit counter ctr. It consists of the following
steps:

1: xof← XOF.Init(hpiop, ctr)

2: {i∗[e]}e<τ ← SampleIntegers(xof, {0, . . . , 2κ − 1}, τ)
3: vpow ← SampleFieldElements(xof,F2, wpow)

4: return ({i∗[e]}e<τ , vpow)
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3.2.3 Hashing and commitments

Several subroutines used in the SD-in-the-Head signature scheme involve cryptographic hashing.
This is the case of the subroutines computing the Fiat-Shamir hashes and the commitments.
We also use a cryptographic a hash function for the seed trees (hypercube variant) and the
Merkle trees (threshold variant).

Cryptographic hash function. The different hash and commitment subroutines are all derived
from a common cryptographic hash function

Hash : {0, 1}∗ → {0, 1}2λ .

The concrete instance of the hash function we use in the SD-in-the-Head scheme is given in
Section 4.3.

We use domain separation for the different usages of the hash function. This is simply done
by prepending a fixed byte value to the data to be hashed, as specified below for the different
cases.

Seed Commitments. The subroutine CommitSeed takes as input a λ-bit salt, an index idx and
a λ-bit seed, and it outputs a commitment digest for this seed. For performance reason, while
we used hashing to commit to seeds in the first version of SD-in-the-Head, we use a block cipher
in the second version. For Categories I and V, we build the commitment digest com for the
seed seed as follows:

1: tweak← 2 · (τ ·N + idx)
2: left← Encλ(key = seed, ptx = salt⊕MapToBits(tweak))

3: right← Encλ(key = seed, ptx = salt⊕MapToBits(tweak+ 1))

4: com← (left ∥ right) ▷ com ∈ {0, 1}2λ
5: return com

where MapToBits computes the bitstring that corresponds to the binary decomposition of the
input integer in a little-endian order. For Category III, we build the commitment digest as
follows:

1: tweak← 2 · (τ ·N + idx)
2: left← Rijndael-256-256(key = 064 ∥ seed, ptx = (064 ∥ salt)⊕MapToBits(tweak))

3: right← Rijndael-256-256(key = 064 ∥ seed, ptx = (064 ∥ salt)⊕MapToBits(tweak+ 1))

4: com← (GetMSB192(left) ∥ GetLSB192(right)) ▷ com ∈ {0, 1}2λ
5: return com

where GetMSB192 and GetLSB192 return respectively the 192 most significant bits and the 192
less significant bits.

Fiat-Shamir Hashes. The hash functions used to derive the Fiat-Shamir Hashes are defined
as:

Hashbavc(data) := Hash(1 ∥ data)
Hashaux(data) := Hash(2 ∥ data)
Hashlines(data) := Hash(3 ∥ data)
Hashpiop(data) := Hash(4 ∥ data)

where the prefixes 1, 2, 3 and 4 are encoded on one byte.
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3.2.4 All-but-one vector commitments

As the first version of SD-in-the-Head, SD-in-the-Head-2 relies on an all-but-one vector commit-
ment (AVC). This primitive commits N random λ-bit seeds and later opens/reveals all of them
except one. In practice, since we need τ such sets of N seeds, we will rely on the batched variant
leveraging the one-tree optimisation from [BBM+24].

Commitment routine. The commitment routine of the batched all-but-one vector commitment
(BAVC) scheme is described in Algorithm 5. After expanding a large GGM tree of τ ·N leaves
using the routine ExpandSeed, it commits each seed using the routine CommitSeed where the
(j+1)th seed of the (i+1)th repetition is the (i · τ + e+1)th leaf of the big tree. Then it hashes
all the seed commitments and the resulting digest hcom forms the global commitment of all the
seeds. It outputs the tree and the seed commitments as the opening key.

Algorithm 5 BAVC.Commit

Input: a salt salt ∈ {0, 1}λ and a root seed rseed ∈ {0, 1}λ

▷ Expand the GGM tree

1: tree[1]← rseed
2: for i from 1 to (τ ·N − 1) do
3: (tree[2i], tree[2i+ 1])← ExpandSeed(salt, tree[i], i)

▷ Commit the seeds

4: for e from 0 to (τ − 1) do
5: for i from 0 to (N − 1) do
6: seeds[e][i]← tree[τ ·N + (i · τ + e)]
7: commit[e][i]← CommitSeed(salt, seeds[e][i], i · τ + e)

▷ Set commitment and key

8: hcom ← Hashbavc({commit[e][i]}e,i)
9: key← tree ∥ commit

10: return (seeds, hcom, key)

Opening routine. The opening routine of the BAVC scheme is described in Algorithm 6. It
takes as input the opening key (the tree nodes and the seed commitments) and the list of
the seeds to remain hidden. It outputs the opening BAVC proof πBAVC, which will enable the
verifier to recompute all the revealed leaves while checking their consistency with the BAVC
commitment hcom. To proceed, the routine first searches the smallest set of tree nodes that
enables to recompute all the leaves excluding those in the input list. This search algorithm
involves a queue structure which comes with four dedicated subroutines:

• Queue.Init() returns a empty queue,

• Queue.Enqueue(v) pushes a value v at the end of the queue,

• Queue.Dequeue() pops the value which is at the top of the queue, and

• Queue.Head() returns the value which is at the top of the queue without removing it.
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This routine follows the paths between the hidden leaves and the tree root, and at each inter-
mediary node, decides whetever the sibling node should be in the output set. If the number of
revealed nodes is larger than Topen, the routine aborts. At the end of the search algorithm, it
pads the computed sibling paths with zeroes such that the result is always of Topen · λ bits. Fi-
nally, it outputs the opening BAVC proof πBAVC made of the sibling paths and the commitments
of all the hidden leaves.

Algorithm 6 BAVC.Open

Input: a BAVC key key and a set {i∗[e]}e<τ of τ indexes in {0, . . . , N − 1}

1: (tree, commit)← key
2: queue← Queue.Init()
3: for idx ∈ {i∗[e] · τ + e : e ∈ {0, . . . , τ − 1}} in the decreasing order do
4: queue.Enqueue(τ ·N + idx)

5: path← ∅
6: while queue.Head() ̸= 1 do ▷ While the queue head is not the root
7: node idx← queue.Dequeue()
8: if |queue| ≥ 2 then
9: sibling idx = node idx⊕ 1

10: if queue.Head() = sibling idx then ▷ Check if the queue head is the sibling node
11: queue.Dequeue()
12: else if |path| < Topen · λ then ▷ Check if the sibling path is not too long
13: path← path ∥ tree[sibling idx] ▷ Append the sibling node to the path
14: else
15: return ⊥ ▷ Return failure since the sibling path is too long

16: queue.Enqueue(⌊node idx/2⌋)
17: path← PadWithZero(path, Topen · λ) ▷ path ∈ {0, 1}Topen·λ

18: commiti∗ ← (commit[0][i∗[0]], . . . , commit[τ − 1][i∗[τ − 1]]) ▷ commiti∗ ∈ {0, 1}τ ·(2λ)
19: πBAVC ← (path, commiti∗)
20: return πBAVC

Reconstruction routine. The reconstruction routine of the BAVC scheme is described in Al-
gorithm 7. It takes as input the list of hidden seeds, the BAVC opening proof πBAVC (containing
the sibling paths and the commitments of the hidden seeds) and the salt. Using the same search
algorithm as in the opening routine, it prefills the tree with the nodes in the sibling paths. It
checks whetever the used padding is valid (i.e. the padded bits are only zeroes). The routine
then expands the GGM tree using the prefilled nodes and recomputes the commitments of all
the revealed seeds. Finally, it recomputes the BAVC commitment hcom and returns it together
with the revealed seeds.
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Algorithm 7 BAVC.Reconstruct

Input: a set {i∗[e]}e<τ of τ indexes in {0, . . . , N − 1}, a BAVC opening πBAVC and a salt
salt ∈ {0, 1}λ

▷ Prefill the partial GGM tree

1: (path, commiti∗)← πBAVC
2: queue← Queue.Init()
3: for idx ∈ {i∗[e] · τ + e : e ∈ {0, . . . , τ − 1}} in the decreasing order do
4: queue.Enqueue(τ ·N + idx)

5: tree[1], . . . , tree[2 · τ ·N − 1]← ∅, . . . , ∅
6: while queue.Head() ̸= 1 do ▷ While the queue head is not the root
7: node idx← queue.Dequeue()
8: if |queue| ≥ 2 then
9: sibling idx = node idx⊕ 1

10: if queue.Head() = sibling idx then ▷ Check if the queue head is the sibling node
11: queue.Dequeue()
12: else if |path| < Topen · λ then ▷ Check if the sibling path is not too long
13: (tree[sibling idx], path)← path ▷ Extract the λ first bits of path
14: else
15: return ⊥ ▷ Return failure since the sibling path is too long

16: queue.Enqueue(⌊node idx/2⌋)
17: if |path| > 0 and path ̸= 0 then ▷ Check that the padding is correct
18: return ⊥

▷ Expand the partial GGM tree

19: for i from 1 to (τ ·N − 1) do
20: if tree[i] ̸= ∅ then
21: (nodes[2i], nodes[2i+ 1])← ExpandSeed(salt, nodes[i], i)

▷ Recompute commitment

22: for e from 0 to (τ − 1) do
23: for i from 0 to (N − 1) do
24: if i ̸= i∗[e] then
25: seeds[e][i]← nodes[τ ·N + (i · τ + e)]
26: com[e][i]← CommitSeed(salt, seeds[e][i], i · τ + e)
27: else
28: seeds[e][i]← ∅
29: (com[e][i] ∥ commiti∗)← commiti∗

30: hcom ← Hashbavc({com[e][i]}e,i)
31: return (hcom, seeds)
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3.2.5 Batch line commitment

As explained in Section 2.1, the prover in the PIOP protocol of SD-in-the-Head-2 needs to

commit degree-1 vector polynomials Pwit := (P1, . . . , P|wit|) ∈
(
F2λ [X]

)|wit|
such that Pwit(0) =

wit ∈ F|wit|2 , and Prnd := (Prnd,1,1, . . . , Prnd,1,λ, . . . , Prnd,d−1,1, . . . , Prnd,d−1,λ) ∈
(
F2λ [X]

)
(d− 1)λ

such that Prnd(0) ∈ F(d−1)λ
2 . Therefore, we propose a primitive named batch line commitment

following the VOLEitH approach which is dedicated to commit (and later open evaluations of)
these polynomials.

Gray code ϕGray. The batch line commitment depends on a public one-to-one function ϕ :
{1, . . . , N} → F1×κ

2 . This function is used in the commitment procedure to commit polynomials
while enabling the later opening of one evaluation on a point from S := {ϕ(0), . . . , ϕ(N − 1)}.
While the definition of ϕ has no importance in the correctness and the soundness of the scheme,
it might impact the performance. In the SD-in-the-Head-2 signature scheme, we use the Gray
code for ϕ, namely we use

ϕGray : i ∈ {0, . . . , N − 1} 7→ binκ(i)⊕ (binκ(i)>>1) ,

where

binκ(i) := (bκ−1, . . . , b0) ∈ F1×κ
2 ,

binκ(i)>>1 := (0, bκ−1, . . . , b1) ∈ F1×κ
2 ,

with i =
∑κ−1

j=0 bj · 2j . This code has the nice property that two consecutive values ϕGray(i) and
ϕGray(i+ 1) differ on only one position.
In Algorithm 8 and Algorithm 10, ϕGray is used to compute

racc ←
N−1∑
i=0

rrnd,i ,

rbase ←
N−1∑
i=0

ϕGray(i) · rrnd,i .

Thanks to the structure of ϕGray, we can compute racc and rbase with only 2N bit operations,
while it would be in O(N ·κ) if we would use a natural bit-representation for ϕ. Indeed, we can
compute

racc,j ←
j∑

i=0

rrnd,i (4)

rbase,j ←
j∑

i=0

racc,i · (ϕGray(i)⊕ ϕGray(i+ 1)) (5)

for all 0 ≤ j ≤ N − 1, assuming ϕGray(N) = 0. Then, we can set racc and rbase respectively as
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racc,N−1 and rbase,j . Indeed, it comes from

rbase =
N−1∑
j=0

racc,j · (ϕGray(j)⊕ ϕGray(j + 1))

=

N−1∑
j=0

(
j∑

i=0

rrnd,i

)
· (ϕGray(j)⊕ ϕGray(j + 1))

=
N−1∑
i=0

rrnd,i ·
N−1∑
j=i

(ϕGray(j)⊕ ϕGray(j + 1))

=
N−1∑
i=0

rrnd,i · ϕGray(i) .

To sum up, we can compute racc usingN bit operations using Equation (4), then we can compute
rbase using just N additional bit operations using Equation (5) since ϕGray(i)⊕ϕGray(i+1) has
only one non-zero bit at a public position.

The function ψ. The batch line commitment depends on a public one-to-one function ψ :
Fτ ·κ
2 → F2λ . In practice, we define ψ as

ψ : v ∈ Fτ ·κ
2 7→

τ ·κ−1∑
i=0

vi · ξi,

where ξ is defined in Table 2.

Commitment routine. The commitment routine of the batched line commitment (BLC) scheme
is described in Algorithm 8. After expanding τ sets of N seeds using the BAVC scheme, it com-
putes the polynomials P (0), . . . ,P (τ−1) as

P (e) = r
(e)
acc ·X + r

(e)
base

for all 0 ≤ e < τ , where

r
(e)
acc ←

N∑
i=1

r
(e)
rnd,i ∈ F|wit|+(d−1)λ+(λ+B)

2

r
(e)
base ← −

N∑
i=1

ϕGray(i) · r(e)rnd,i ∈ F|wit|+(d−1)λ+(λ+B)
2κ

with r
(e)
rnd,i := PRG.Init(seeds[e][i]). As explained in Section 2.1, the signer can reveal one

evaluation of those polynomials among N , while keeping the others hidden. We want to merge
those τ vector polynomials into a single polynomial for which the signer will be able to reveal
one evaluation among N τ . To proceed, we use the merging strategy of the VOLEitH framework.
However, since the merging strategy of the VOLEitH approach requires that P (0), . . . ,P (τ−1)

encodes the same values (i.e. the leading terms should be the same), the routine computes an

auxiliary value ∆r(e) := r
(0)
acc − r

(e)
acc for all e > 0 to define the polynomials P ′(0), . . . ,P ′(τ−1) as

P ′(e) =

{
P (e) if e = 0

P (e) + (∆r(e)) ·X = r
(0)
acc ·X + r

(e)
base otherwise.
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From now, the signer has committed τ vector polynomials {P ′(e)}e<τ with the same leading
term, but should convince the verifier that they really have the same leading term. To proceed,

it runs the consistency check which consists in computing P
(e)
α′ ∈ (F2κ)

λ+B as [M | Iλ+B] ·P ′(e)

for all e. More precisely, it expands the consistency challenge M and computes

α′
plain := [M | Iλ+B] · r

(0)
acc ∈ Fλ+B

2

(leading term of all P
(e)
α′ ’s) and

α
′(e)
base := [M | Iλ+B] · r

(e)
base ∈ Fλ+B

2κ

(constant term of P
(e)
α′ ) for all e.

After hashing the consistency check output {P (e)
α′ }e<τ , the signer merges the τ vector poly-

nomials P ′(0), . . . ,P ′(τ−1). The routine computes P̂ = ψ(P ′(0), . . . ,P ′(τ−1)) as:

P̂ (X) = r
(0)
acc ·X + ψ(r

(0)
base, . . . , r

(1)
base) ∈ (F2λ [X])|wit|+(d−1)·λ+(λ+B) .

We then define P̂wit as the |wit| first coordinates of P̂ and P̂rnd as the λ ·(d−1) next coordinates.
Then, the routine builds Prnd asX ·P̂rnd(1/X) (i.e. it swaps the leading and the constant terms).
For the witness polynomials, we need to enfore the constant term to be the input wit, so the
routine computes ∆wit as wit− P̂ (∞) where P̂ (∞) is the leading term of P̂ and build Pwit as
X · P̂wit(1/X) + ∆wit.

The commitment routine outputs the committed degree-1 polynomials Pwit and Prnd, together
with their BLC commitment hlines, the BAVC key and the public auxiliary values.

Opening routine. The opening routine of the BLC scheme is described in Algorithm 9. It takes
as input a BAVC opening key and a hash digest. Using the routine ExpandEvaluationChallenge,
it expands a pseudo-random evaluation point ∆inv defined as

∆inv ← ψ([i∗(0), . . . , i∗(τ−1)]) ,

where i∗(e)’s are pseudo-random values from {0, . . . , N − 1}. At the same time, it expands a
random wpow-bit grinding value vpow. If the BAVC opening fails, the grinding value vpow is
not zero or if ∆inv = 0 (and hence fails to be invertible), the routine increments a counter and
re-expands an other challenge until the three conditions are satisfied. It outputs the counter
and the BAVC opening proof.

Recomputation routine. The recomputation routine ot the BLC scheme is described in Al-
gorithm 10. It first re-expands the evaluation challenge using ExpandEvaluationChallenge and
checks vpow = 0 and ∆inv ̸= 0. After the check, it deduces the evaluation point ∆ := (∆inv)

−1.
It gets all the opened seeds using BAVC.Reconstruct, i.e. all the seeds except those in {i∗[e]}e<τ .
It computes P (0)(ϕGray(i

∗(0))), . . . ,P (τ−1)(ϕGray(i
∗(τ−1))) using the relation

∀e, P (e)(ϕGray(i
∗(e))) =

N∑
i=1,i ̸=i∗(e)

(
ϕGray(i

∗(e))− ϕGray(i)
)
· r(e)rnd,i ,

with r
(e)
rnd,i := PRG.Init(seeds[e][i]). It then deduces P ′(e)(ϕGray(i

∗(e))) for all e, using the
relation

∀e, P ′(e)(ϕGray(i
∗(e))) =

{
P (e)(ϕGray(i

∗(e))) if e = 0

P (e)(ϕGray(i
∗(e))) + (∆r(e)) · ϕGray(i

∗(e)) otherwise.
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Algorithm 8 BLC.Commit

Input: a salt salt ∈ {0, 1}λ, a root seed rseed ∈ {0, 1}λ, and a witness wit ∈ F|wit|2

▷ Phase 1: Expand seeds.

1: (seeds, hcom, key)← BAVC.Commit(salt, rseed)

▷ Phase 2: Folding.

2: for e from 0 to (τ − 1) do

3: racc[e] = 0 ▷ racc[e] ∈ F[|wit|+(d−1)λ+(λ+B)]×1
2

4: rbase[e] = 0 ▷ rbase[e] ∈ F[|wit|+(d−1)λ+(λ+B)]×1
2κ

5: for i from 0 to (N − 1) do
6: prg← PRG.Init(seeds[e][i])
7: rrnd ← PRG.SampleFieldElements(prg,F2, |wit|+ (d− 1)λ+ (λ+B))
8: racc[e] += rrnd
9: rbase[e] += rrnd · ϕGray(i) ▷ ϕGray : {0, . . . , 2κ − 1} → F1×κ

2

10: if e > 0 then
11: aux[e]← racc[0]⊕ racc[e]

12: u← racc[0] ▷ u ∈ F[|wit|+(d−1)λ+(λ+B)]×1
2

13: V ← [rbase[0], . . . , rbase[τ − 1]] ▷ V ∈ F[|wit|+(d−1)λ+(λ+B)]×[τ ·κ]
2

14: haux = Hashaux(hcom, aux[1], . . . , aux[τ − 1])

▷ Phase 3: Run consistency check.

15: M ← ExpandConsistencyChallenge(haux) ▷ M ∈ F(λ+B)×(|wit|+(d−1)λ)
2

16: α′plain = [Iλ+B |M ] · u ▷ α′plain ∈ F[λ+B]×1
2

17: α′base = [Iλ+B |M ] · V ▷ α′base ∈ F(λ+B)×(τ ·κ)
2

▷ Phase 4: Build lines.

18: (. . . ∥ rwit ∥ rrnd) = u where |rwit| = |wit| and |rrnd| = λ · (d− 1)
19: (rbase,wit ∥ rbase,rnd) = (ψ(V(λ+B)+1) ∥ . . . ∥ ψ(V(λ+B)+|wit|+(d−1)λ))
20: ▷ ψ : Fτ ·κ

2 → F2λ , Vi’s are rows of V
21: ∆wit = wit⊕ rwit
22: Pwit(X)← wit+ rbase,wit ·X
23: Prnd(X)← rrnd + rbase,rnd ·X

24: hlines = Hashlines(haux,α
′
plain,α

′
base,∆wit)

25: aux′ ← (aux ∥ α′plain ∥ ∆wit)
26: return (Pwit, Prnd, hlines, key, aux

′)

Now, the verifier needs to check the consistency test. After expanding the consistency chal-

lengeM using ExpandConsistencyChallenge, it computes P
(e)
α′ (ϕGray(i

∗(e))) as [M | Iλ+B]P
′(e)(ϕGray(i

∗(e)))

and deduces the constant term α
′(e)
base of P

(e)
α′ as α

′(e)
base := P

(e)
α′ (ϕGray(i

∗(e)))−α
′(e)
plain ·ϕGray(i

∗(e)).

After hashing the consistency check output {P (e)
α′ }e<τ , the verifier computes P̂ (∆inv) by
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Algorithm 9 BLC.OpenRandomEvaluation

Input: a BAVC opening key key and a hash digest hpiop ∈ {0, 1}2λ

1: ctr← 0 ▷ 32-bit counter
2: retry:

3: ({i∗[e]}e<τ , vpow)← ExpandEvaluationChallenge(hpiop, ctr)
4: ∆inv ← ψ([i∗[0], . . . , i∗[τ − 1]]) ▷ ∆inv ∈ F2λ

5: πBAVC ← BAVC.Open(key, {i∗[e]}e<τ )
6: if πBAVC = ⊥ or vpow ̸= 0 or ∆inv = 0 then
7: ctr← ctr+ 1
8: goto retry

9: pdecom = (ctr, πBAVC)
10: return pdecom

merging the τ evaluations P ′(0)(ϕGray(i
∗(0))), . . . ,P ′(τ−1)(ϕGray(i

∗(τ−1))) as:

P̂ (∆inv) := ψ
(
P ′(0)(ϕGray(i

∗(0))), . . . ,P ′(τ−1)(ϕGray(i
∗(τ−1)))

)
∈ F|wit|+(d−1)λ+(λ+B)

2λ
.

They get P̂wit(∆inv) as the |wit| first coordinates of P̂ (∆inv) and P̂rnd(∆inv) as the λ ·(d−1) next
coordinates. Then the routine computes prnd := Prnd(∆) as ∆ · P̂rnd(∆inv) and pwit := Pwit(∆)
as ∆ · P̂rnd(∆inv) + ∆wit.
The reconstruction routine outputs the evaluations pwit and prnd, together with the evaluation

point ∆ and the BLC commitment hlines.
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Algorithm 10 BLC.RecomputeEvaluation

Input: a BLC auxiliary value aux′, a BLC opening pdecom, a salt salt ∈ {0, 1}λ and a hash
digest hpiop ∈ {0, 1}2λ

▷ Phase 1: Get evaluation point

1: (ctr, πBAVC) = pdecom
2: (aux ∥ α′plain ∥ ∆wit)← aux′

3: ({i∗[e]}e<τ , vpow)← ExpandEvaluationChallenge(hpiop, ctr)
4: ∆inv ← ψ([i∗[0], . . . , i∗[τ − 1]]) ▷ ∆inv ∈ F2λ

5: if vpow ̸= 0 or ∆inv = 0 then
6: return (⊥,⊥,⊥,⊥)
7: ∆← (∆inv)

−1

▷ Phase 2: Expand seeds.

8: hcom, seeds← BAVC.Reconstruct({i∗[e]}e<τ , πBAVC, salt)

▷ Phase 3: Folding.

9: for e from 0 to (τ − 1) do

10: reval[e] = 0 ▷ reval[e] ∈ F[|wit|+(d−1)λ+(λ+B)]×1
2κ

11: for i ∈ {0, . . . , (N − 1)}\i∗[e] do
12: prg← PRG.Init(seed[e][i])
13: rrnd ← PRG.SampleFieldElements(prg,F2, |wit|+ (d− 1)λ+ (λ+B))

14: rshare[e] += rrnd · (ϕGray(i
∗[e])− ϕGray(i)) ▷ ϕGray : {0, . . . , 2κ − 1} → F1×[κ]

2

15: if e > 0 then
16: rshare[e] += aux[e] · ϕµe(i

∗[e])

17: Q← [rshare[0], . . . , rshare[τ − 1]] ▷ Q ∈ F[|wit|+(d−1)λ+(λ+B)]×[τ ·κ]
2

18: haux = Hashaux(hcom, aux[1], . . . , aux[τ − 1])

▷ Phase 4: Run consistency check.

19: M ← ExpandConsistencyChallenge(haux) ▷ M ∈ F(λ+B)×(|wit|+(d−1)λ)
2

20: α′eval ← [Iλ+B |M ] ·Q ▷ α′eval ∈ F[λ+B]×[τ ·κ]
2

21: α′base ← α′eval −α′plain ·∆inv ▷ α′base ∈ F[λ+B]×[τ ·κ]
2

▷ Phase 5: Build line evaluation.

22: (reval,wit ∥ reval,rnd) = (ψ(Qλ+B+1) ∥ . . . ∥ ψ(Q(λ+B)+|wit|+(d−1)λ))
23: ▷ ψ : Fτ ·κ

2 → F2λ , Qi’s are rows of Q
24: pwit ← ∆wit⊕ (∆ · reval,wit)
25: prnd ← ∆ · reval,rnd

26: hlines = Hashlines(haux,α
′
plain,α

′
base)

27: return (∆,pwit,prnd, hlines)
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3.2.6 PIOP protocol

As explained in Section 2.1 and Section 3.1, the PIOP protocol aims to compute the degree-d
polynomial Pα such that

Pα(X) = P0(X) ·X +
m∑
j=1

γj · fj(P1(X), . . . , P|wit|(X)).

where

• P1, . . . , P|wit| are the witness polynomials, i.e. Pwit :=
(
P1, . . . , P|wit|

)
;

• P0 is the degree-(d− 1) masking polynomial built as

P0(X) :=
d−2∑
i=0

λ−1∑
j=0

ξj · Prnd,i,j(X)

 ·Xi

with Prnd := (Prnd,0,0, . . . , Prnd,0,λ−1, . . . , Prnd,d−2,0, . . . , Prnd,d−2,λ−1) and (1, ξ, ξ2 . . .) is a
F2-basis of F2λ ;

• {fj}j are the degree-d polynomial contraints that the SD-in-the-Head-2 witness wit should
satisfy (see Section 2.2).

We have two types of polynomial constraints:

1. The first constraints consist of checking that the elementary vectors used to build the
chunks of x by tensor products have exactly one non-zero coordinate. Since the last
coordinates of those vectors is discarded from the witness (and then recovered as 1 minus
the sum of the other coordinates), we actually need to check that there is at most one
non-zero coordinate.

2. The other constraints consist of checking that the vector x obtained by concatenating the
tensor products of the elementary vectors satisfies the linear relation y = Hx.

Parsing the input polynomials. The PIOP protocol takes the input vector polynomials Pwit

and Prnd. The vector polynomial Pwit :=
(
P1, . . . , P|wit|

)
encodes the RSD witness wit, a bit-

string made of the decomposition of the RSD solution x as elementary vectors (input of tensor
products). The RSD witness wit can be parsed as bits {wi,j,k}i,j,k, where wi,j,k is the kth coordi-
nates of the jth elementary vector in the tensor product of the ith chunk of the RSD solution x.
By parsing Pwit in the same way, we can get the degree-1 polynomials {Pwi,j,k

}i,j,k that encode
the bits {wi,j,k}i,j,k.

The vector Prnd := (Prnd,1,1, . . . , Prnd,1,λ, . . . , Prnd,d−1,1, . . . , Prnd,d−1,λ) contains λ · (d − 1)
degree-1 polynomials with leading term from F2λ and constant term from F2. These poly-
nomials are used to build a degree-(d− 1) random polynomial P0 ∈ F2λ [X] as:

P0(X) :=
d−2∑
i=0

λ−1∑
j=0

ξj · Prnd,i,j(X)

 ·Xi.

We describe in Algorithm 11 the routine that takes as inputs the vector polynomials Pwit and
Prnd and outputs the set of degree-1 polynomials {Pwi,j,k

}i,j,k that encode the bits {wi,j,k}i,j,k
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of the decomposition of the RSD solution and the degree-(d − 1) polynomial P0. We then

describe in Algorithm 12 the routine that takes as inputs the vectors pwit := Pwit(∆) ∈ F|wit|
2λ

and prnd := Prnd(∆) ∈ F|rnd|
2λ

and outputs the set {Pwi,j,k
(∆)}i,j,k and the value P0(∆), for some

field element ∆ ∈ F2λ .

Algorithm 11 PIOP.Prover.Format

Input: two degree-1 vector polynomials Pwit and Prnd.

1: ind← 0
2: for i from 0 to w − 1 do
3: for j from 0 to d− 1 do
4: for k from 0 to µj − 2 do
5: Pwi,j,k

← (Pwit)ind ▷ Degree-1 polynomial
6: ind← ind+ 1

7: P0(X)←
∑d−2

i=0

(∑λ−1
j=0 ξ

j · (Prnd(X))iλ+j

)
·Xi ▷ Degree-(d− 1) polynomial

8: return {Pwi,j,k
}i,j,k, P0

Algorithm 12 PIOP.Verifier.Format

Input: a field element ∆ ∈ F2λ , two vectors pwit and prnd ▷ pwit := Pwit(∆), prnd := Prnd(∆)

1: ind← 0
2: for i from 0 to w − 1 do
3: for j from 0 to d− 1 do
4: for k from 0 to µj − 2 do
5: pwi,j,k

← (pwit)ind
6: ind← ind+ 1

7: p0 ←
∑d−2

i=0

(∑λ−1
j=0 ξ

j · (prnd)iλ+j

)
·∆i

8: return {pwi,j,k
}i,j,k, p0

Checking elementary vectors. To check that a binary vector (wi,j,0, . . . , wi,j,µj−2) ∈ Fµj−1
2 has

at most one non-zero coordinate, we check that for all k ̸= k′, we have wi,j,k ·wi,j,k′ = 0. However,
to avoid performing O(µ2j ) multiplications, we instead check that the polynomial Di,j ∈ F2[Y ]
defined as:

Di,j(Y ) :=

µj−2∑
k=0

Y k · wi,j,k

 ·
µj−3∑

k=0

Y (µj−1)k · wi,j,k

−
µj−3∑

k=0

Y µj ·k · wi,j,k


equals 0 ∈ F2[Y ] for all 1 ≤ i ≤ w and 1 ≤ j ≤ d. For our considered parameters, the degree of
these polynomials always satisfies

deg(Di,j) = (µj − 3) · µj + 1 < 32 .

Moreover, we always have d ≤ 4. Those two upper bounds imply:

∀ 1 ≤ j ≤ d, Di,j(Y ) = 0 ∈ F2[Y ] ⇔
d∑

j=1

ξ32(j−1) ·Di,j(ξ) = 0 ∈ F2λ .
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The check of the elementary vectors hence reduces to checking the right-hand side of the above
equivalence.
Looking ahead, these relations will be batched using random coefficients for the definition of

the polynomial Pα. Let v
′ = (v′1, . . . , v

′
w) ∈ Fw

2λ
the vector with coordinates defined as

v′i =

d∑
j=1

ξ32(j−1) ·Di,j(ξ) , (6)

and let γ ′ ∈ Fw
2λ

be the challenge from the verifier. Checking the elementary vectors shall

consist in checking γ ′⊤ · v′ = 0 which implies v′ = 0 with overwhelming probability over the
randomness of γ ′.
The routine PIOP.Prover.UnitaryCheck performs the computation of Di,j(ξ) from a prover

standpoint, where each witness bit wi,j,k is encoded through a degree-1 polynomial Pwi,j,k
(X).

The routine PIOP.Verifier.UnitaryCheck performs the computation of Di,j(ξ) from a verifier
standpoint, where each witness bit wi,j,k is encoded through a polynomial evaluation pwi,j,k

:=
Pwi,j,k

(∆).

Algorithm 13 PIOP.Prover.UnitaryCheck

Input: arity µj , degree-1 polynomials Pwi,j,0(X), . . . , Pwi,j,µj−2(X) ∈ F2λ [X] for which the con-
stant terms are wi,j,0, . . . , wi,j,µj−2 ∈ F2.

1: sum1 ←
∑µj−2

k=0 ξk · Pwi,j,k
(X)

2: sum2 ←
∑µj−3

k=0 ξ(µj−1)k · Pwi,j,k
(X)

3: sum3 ←
∑µj−3

k=0 ξµj ·k · Pwi,j,k
(X)

4: return sum1 · sum2 − sum3 ▷ Degree-1 polynomial (since the witness is well-built)

Algorithm 14 PIOP.Verifier.UnitaryCheck

Input: arity µj , evaluations pwi,j,0 , . . . , pwi,j,µj−2 ∈ F2λ ▷ ∀k, pwi,j,k
:= Pwi,j,k

(∆)

1: sum1 ←
∑µj−2

k=0 ξk · pwi,j,k

2: sum2 ←
∑µj−3

k=0 ξ(µj−1)k · pwi,j,k

3: sum3 ←
∑µj−3

k=0 ξµj ·k · pwi,j,k

4: return sum1 · sum2 − sum3

Checking RSD linear constraints. We need to check the relation Hx = y where x = (e0 ∥
. . . ∥ ew−1) is built as the concatenation of the elementary vectors ei resulting from the tensor
products. Namely, we need to check

v :=
w−1∑
i=0

m−1∑
j=0

(ei)j · hi·m+j − y = (0, . . . , 0) ∈ Fn−k
2 ,

where [h0 | h1 | . . . | hn−1] = H.
Looking ahead, the coordinates of this vector (encoded as polynomials) will be batched using

random coefficients in the computation of Pα. To make this batching more efficient, we embed
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blocks from Fλ
2 into elements of F2λ . Let ϕ be the linear F2-linear field-embedding isomorphism:

ϕ : (v1, . . . , vλ) ∈ Fλ
2 7→

λ∑
i=1

vi · ξi−1 ,

and let Φ be its block-wise variant:

Φ : v ∈ Fn−k
2 7→

(
ϕ(v1, . . . , vλ), . . . , ϕ(. . . , vn−k, 0, . . . , 0)

)
∈ F⌈

n−k
λ ⌉

2λ
, (7)

where the last block is padded with λ ·
⌈
n−k
λ

⌉
− (n− k) zeros. We have

v = 0 ∈ Fn−k
2 ⇔ Φ(v) = 0 ∈ F⌈

n−k
λ ⌉

2λ
.

Now let γ ∈ F⌈
n−k
λ ⌉

2λ
be the challenge from the verifier. Checking the RSD linear constraints

shall consist in checking γ⊤ · Φ(v) = 0 which implies Φ(v) = 0 (and hence v = 0) with
overwhelming probability over the randomness of γ. Then we observe that γ⊤ · Φ(v) can be
written as:

γ⊤ · Φ(v) =
w−1∑
i=0

m−1∑
j=0

(ei)j · h[γ]i·m+j − y
[γ] , (8)

where
h
[γ]
j := γ⊤ · Φ(hj) ∀ 0 ≤ j ≤ n− 1 and y

[γ]
j := γ⊤ · Φ(y) . (9)

Mux tree for efficient evaluation. To compute γ⊤ ·Φ(v), either as polynomial encoding on the
prover side (i.e., in the computation of Pα) or as evaluation encoding on the verifier side (i.e.,
in the computation of Pα(∆)), a natural option would be to expand each elementary vector ei
from the witness bits {wi,j,k}j,k and evaluate Equation 8. However, this approach would involve
many field multiplications. We instead rely on a multiplexer tree (or “mux tree” for short).
For a vector b = (b0, . . . , bµj−2) ∈ {0, 1}µj−1 such that wH(b) ≤ 1, and a vector u =

(u0, . . . , uµj ) ∈ Fµj

2λ
, we define the µj-to-1 multiplexer gate as follows:

Muxµj : (b,u) 7−→


u0 if b = 0

u1 if b0 = 1
...

uµj−1 if bµj−2 = 1

This gate can be efficiently implemented using µj − 1 multiplications:

Muxµj (b,u) = u0 +

µj−1∑
j=1

bj−1 · (uj − u0).

As explained in Section 2.2, the elementary vectors ei’s composing the RSD solution x = (e0 ∥
. . . ∥ em−1) are defined as:

ei ←


bi,1,1

bi,1,2
...

bi,1,µ1−1

1−
∑

k bi,1,k

⊗


bi,2,1

bi,2,2
...

bi,2,µ2−1

1−
∑

k bi,2,k

⊗ . . .⊗


bi,d,1

bi,d,2
...

bi,d,µd−1

1−
∑

k bi,d,k

 ∈ Fn/w.
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For all i, we can observe that computing
∑m

j=0(ei)j · h
[γ]
i·m+j is equivalent to computing the

root noded,0 of a mux tree with arities (µ1, . . . , µd). Formally, for all 0 ≤ j ≤ d and 0 ≤ ℓ <
µj+1 · . . . · µd, let

nodej,ℓ =

{
h
[γ]
i·m+ℓ if j = 0 (the tree leaves)

Muxµj

(
bi,j , (nodej−1,µj ·h, . . . , nodej−1,µj ·(ℓ+1)−1)

)
if j > 0 (the tree nodes)

where bi,j := (bi,j,1, . . . , bi,j,µj−1). We denote MuxTree((h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1), {bi,j}j) the root of

the mux tree. Equation 8 now rewrites as:

γ⊤ · Φ(v) =
w−1∑
i=0

MuxTree((h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1), {bi,j}j) .

We describe in Algorithm 15 the computation of the mux-tree root from the prover standpoint,
where each witness bit wi,j,k is encoded through a degree-1 polynomial Pwi,j,k

(X). We then
describe in Algorithm 16 the computation of the mux-tree root from the verifier standpoint,
where each witness bit wi,j,k is encoded through a polynomial evaluation.

Algorithm 15 PIOP.Prover.MuxTree

Input: coefficients (h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1) ∈ Fm

2λ
,

degree-1 polynomials {(Pwi,j,0(X), . . . , Pwi,j,µj−2(X))}j of F2λ [X]

1: (node0,0, . . . , node0,m−1)← (h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1) ▷ degree-0 polynomials

2: for j from 1 to d do
3: for h from 0 to µj+1 · . . . · µd − 1 do

4: nodej,ℓ ← nodej−1,µj ·h +
∑µj−2

k=0 Pwi,j,k
(X) ·

(
nodej−1,µj ·h+(1+k) − nodej−1,µj ·h

)
▷ degree-j polynomials

5: return noded,0 ▷ degree-d polynomial

Algorithm 16 PIOP.Verifier.MuxTree

Input: coefficients (h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1) ∈ Fm

2λ
,

evaluations {(pwi,j,0 , . . . , pwi,j,µj−2)}j ∈ Fµ1−1
2λ

× . . .× Fµd−1
2λ

▷ pwi,j,k
:= Pwi,j,k

(∆)

1: (node0,0, . . . , node0,m−1)← (h
[γ]
i·m, . . . , h

[γ]
(i+1)·m−1)

2: for j from 1 to d do
3: for h from 0 to µj+1 · . . . · µd − 1 do

4: nodej,h ← nodej−1,µj ·h +
∑µj−2

k=0 pwi,j,k
·
(
nodej−1,µj ·h+(1+k) − nodej−1,µj ·h

)
5: return noded,0

PIOP Prototocol. We describe in Algorithm 17 the prover’s computation in the PIOP proto-
col, namely how the prover compute the polynomial Pα from the masking polynomial P0 and
the witness Pwit :=

(
P1, . . . , P|wit|

)
. The first step consists in formatting the input polynomials
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using the routine PIOP.Prover.Format: it parses the vector polynomial Pwit as {Pwi,j,k
}i,j,k and

builds the degree-(d − 1) masking polynomial P0 from the degree-1 vector polynomial Prnd.
Next, the verifier challenge (γ′,γ), i.e., the randomness for batching the relations, is generated

by hashing the BLC commitment hlines. Then the batched field-embedded elements {h[γ]j } and
y[γ] are computed (see Equation 9). Finally, the polynomial Pα is computed as:

Pα(X) = P0(X) ·X +
∑
j

γj · fj(P1(X), . . . , P|wit|(X)).

= P0(X) ·X

+

w−1∑
i=0

PIOP.Prover.MuxTree
(
(h

[γ]
i·m, . . . , h

[γ]
(i+1)·m−1), {Pwi,j,k

(X)}j,k
)

︸ ︷︷ ︸
polynomial encoding γ⊤·Φ(v)

+
w−1∑
i=0

γ′i ·
d−1∑
j=0

ξ32(j−1) · PIOP.Prover.UnitaryCheck(µj , {Pwi,j,k
(X)}k)︸ ︷︷ ︸

polynomial encoding γ′⊤·v′

Algorithm 17 PIOP.Prover.Run

Input: two vector polynomials Pwit ∈ (F2λ [X])|wit| and Prnd ∈ (F2λ [X])|rnd|, a hash digest
hlines ∈ {0, 1}2λ and the regular syndrome instance (H ′,y).

Output: a degree-d polynomial Pα of F2λ [X]

1:
(
{Pwi,j,k

}i,j,k, P0

)
← PIOP.Prover.Format(Pwit, Prnd)

2: (γ′,γ)← ExpandBatchingChallenge(hlines) ▷ γ ∈ F⌈
n−k
λ ⌉

2λ
,γ′ ∈ Fw

2λ

3:

(
{h[γ]j }j , y[γ]

)
← BatchLinearEquations(γ,H ′,y)

▷ Compute the degree-α output polynomial Pα(X).

4: Pα(X)← P0(X) ·X − y[γ]
5: for i from 0 to w − 1 do
6: Pα(X)← Pα(X) + PIOP.Prover.MuxTree

(
(h

[γ]
i·m, . . . , h

[γ]
(i+1)·m−1), {Pwi,j,k

(X)}j,k
)

7: Pα(X)← Pα(X) + γ′i ·
∑d

j=1 ξ
32(j−1) · PIOP.Prover.UnitaryCheck(µj , {Pwi,j,k

(X)}k)
8: return Pα(X)

Algorithm 18 describes the verifier’s computation in the PIOP protocol, namely how the
verifier computes the evaluation pα = Pα(∆) from the evaluations P0(∆) and Pwit(∆). The first
step consists in formatting the input evaluations using the routine PIOP.Verifier.Format: it parses
the evaluation vector pwit = Pwit(∆) as {pwi,j,k

}i,j,k = {Pwi,j,k
(∆)}i,j,k and builds the evaluation

p0 = P0(∆) from the evaluation vector prnd = Prnd(∆). Next, the verifier challenge (γ′,γ),
i.e., the randomness for batching the relations, is generated by hashing the BLC commitment

hlines. Then the batched field-embedded elements {h[γ]j } and y[γ] are computed (see Equation 9).
Finally, the evaluation pα = Pα(∆) is computed in the same way as the polynomial Pα on the
prover side (see above equation).



34 The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme

Algorithm 18 PIOP.Verifier.Run

Input: a field element ∆ ∈ F2λ , two vectors pwit ∈ F|wit|
2λ

and prnd ∈ F|rnd|
2λ

, a hash digest

hlines ∈ {0, 1}2λ and the regular syndrome instance (H ′,y).
Output: a field element pα ∈ F2λ

1:
(
{pwi,j,k

}i,j,k, p0
)
← PIOP.Verifier.Format(pwit, prnd)

2: (γ′,γ)← ExpandBatchingChallenge(hlines) ▷ γ ∈ F⌈
n−k
λ ⌉

2λ
,γ′ ∈ Fw

2λ

3:

(
{h[γ]j }j , y[γ]

)
← BatchLinearEquations(γ,H ′,y)

▷ Compute the evaluation pα := Pα(∆).

4: pα ← p0 ·∆− y[γ]
5: for i from 0 to w − 1 do
6: pα ← pα + PIOP.Verifier.MuxTree

(
(h

[γ]
i·m, . . . , h

[γ]
(i+1)·m−1), {pwi,j,k

}j,k
)

7: pα ← pα + γ′i ·
∑d

j=1 ξ
32(j−1) · PIOP.Verifier.UnitaryCheck(µj , {pwi,j,k

}k)
8: return pα

Algorithm 19 BatchLinearEquations

Input: γ, H ′, y

1: for j from 0 to n− 1 do

2: h
[γ]
j ← γ⊤ · Φ(hj) ▷ h

[γ]
j ∈ F2λ , hj is the jth column of H = [H ′ | In−k]

3: y[γ] ← γ⊤ · Φ(y) ▷ y[γ] ∈ F2λ

4: return {h[γ]j }, y[γ]
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4 Parameters and performances

In this section, we propose several parameter sets for the SD-in-the-Head signature scheme.
As explained hereafter, those parameters have been selected to meet the security categories I,
III and V defined by the NIST while targeting good performances (signature size and running
times).

4.1 Selection of parameters

RSD parameters. The RSD parameters include three values: n the length of the code, krsd
the dimension of the code and w the weight of the secret vector. We recall that in an RSD
instance, the secret vector is made of w blocks of size n

w and weight 1.
For θ ∈ [1,∞), we define kmax

rsd , the largest RSD dimension leading to RSD density ≤ 1/θ:

kmax
rsd := n−

⌊
w · log2

( n
w

)
− log2 θ

⌋
.

We further define ksd as the largest SD dimension leading to SD density ≤ 1 (for non-regular
SD with parameters n and w):

ksd := n−
⌊
log2

(
n

w

)⌋
.

According to the security reduction provided in Section 5.1, for any krsd such that

ksd ≤ krsd ≤ kmax
rsd

an algorithm solving an (n, krsd, w)-RSD instance in complexity λ′ bits implies an algorithm
solving an (n, ksd, w)-SD instance with complexity

λ′ + log2

( (
n
w

)
( nw )

w

)
+

1

θ ln 2
. (10)

Parameters are chosen such that for λ′ ∈ {143, 207, 272} (corresponding to NIST Categories I,
III and V), the best binary SD attacks for an (n, ksd, w)-instance have a complexity greater than
(10). Thanks to our reduction (Theorem 5.1), finding an attack with complexity less than λ′ for
an (n, krsd, w)-RSD instance would mean improving over the best known attacks for (n, ksd, w)-
SD instances, the currently hardest type of SD instances (as being on the Gilbert-Varshamov
bound). In practice for implementation reasons krsd is chosen as the greatest value such that
n− krsd is a multiple of 8 and ksd ≤ krsd ≤ kmax

rsd .
Concretely, for our parameter selection, we proceeded as follows. For each w, we find the

smallest n that is a multiple of w so that the (n, ksd, w)-SD instance achieve security (10). We
then set krsd as the largest number ≤ kmax

rsd such that the codimension n − krsd is an exact
multiple of 8. Then for each degree d (we test them all), we consider the mux arities µ =
(µ1, . . . , µd) that minimizes the witness size w (the greedy algorithm that selects µ1 = ⌈n/w⌉1/d
and continues recursively for (µ2, . . . , µd) on ⌈n/w/µ1⌉ yields the optimum). We finally set the
degree d as the one that minimizes w+λ.(d− 1), and thus, the total signature size. The results
are provided in Table 3 hereafter. The best parameters are obtained for arities µ = (4, 4, 4, 4)
or µ = (4, 4, 4, 3), inducing block sizes of either 256 or 192, with rather large values of n.
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Proof system parameters. For each security level, we consider two variants: a “short” variant
with larger GGM trees (decreasing the number of repetitions τ and hence the signature size),
and a “fast” variant with smaller GGM trees (making the computation faster). For the “short”
variant, we use N = 211 for Category I and N = 212 for Categories III and V. For the “fast”
variant, we use N = 28 for all three categories. To achieve a soundness of λ bits, with λ ∈
{128, 192, 256} (for Categories I, III and V), we must select the number of repetitions τ , and
the grinding parameter wpow, to satisfy:

τ · κ− log2(d) + wpow ≥ λ ,

where κ = log2(N). Concretely, we choose τ such that wpow := λ+log2(d)−τ ·κ is a small integer,
typically lower than 5 for the “fast” variants, and up to 10 for the “short” variants. This strategy
yields wpow = 2 for the “fast” variants at each security level while we get wpow ∈ {2, 6, 9} for
the “short” variant. Finally, we fix the value of Topen based on experiments to obtain good
trade-offs between sizes and performances.

The proof system relies on the field on a λ-bit field, namely F2128 , F2192 and F2256 depending
on the security level. Table 2 summarizes the field extensions that we use in our instances.

Table 2: Definition of field extensions.

Field (F2λ) Field extension

F2128 F2[ξ]/⟨ξ128 + ξ7 + ξ2 + ξ1 + 1⟩
F2192 F2[ξ]/⟨ξ192 + ξ7 + ξ2 + ξ1 + 1⟩
F2256 F2[ξ]/⟨ξ256 + ξ10 + ξ5 + ξ2 + 1⟩

4.2 Keys and signature sizes

Public key. The public key has format pk := (seedpk,y); consisting of a λ-bit seed seedpk
used to generate the matrix H ′, and a serialized vector y := Hx ∈ Fn−k

2 corresponding to the
syndrome. The public key has a total size (in bytes) of

|pk| = 1

8
(λ+ n− k) .

Secret key. The secret key has format sk := (seedpk,y,wit, seedsk); consisting of the same
seedpk and y as the public key, as well as the λ-bit seed seedsk and the serialized witness wit.
The latter is made of w sets of d truncated elementary vectors of size µ1− 1, . . . , µd− 1. Thus,
the size of the secret key (in bytes) is

|sk| =
⌈ 1

8

(
2λ+ (n− k) + w ·

d∑
i=1

(µi − 1)
)⌉

.
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Signature size. The size (in bits) of a signature is:

|σ| = 3λ → salt, hpiop

+ (τ − 1) · (|wit|2 + (d− 1)λ+ (λ+B)) → aux

+ (λ+B) → α′
plain

+ |wit|2 → ∆wit

+ d · λ → (α1, . . . , αd)

+ λ · Topen + τ · (2λ) + 32 → pdecom

with |wit|2 := ceil8(w ·
∑d

i=1(µi − 1)), where ceil8(x) = 8 · ⌈x/8⌉.

4.3 Selected parameters

The signature parameters of our proposed instances are summarized in Table 3 and in Table 4
for the different security categories. Table 3 gives the syndrome decoding parameters which
are common to both trade-offs while Table 4 gives the proof system parameters and associated
sizes.

Table 3: RSD parameters of SD-in-the-Head-2.

Parameter
Sets

NIST Security RSD Parameters Modeling

Category Bits q n (n− krsd) krsd w µ

SDitH2-L1-gf2 I 143 2 10 360 432 9 928 56 [4,4,4,3]

SDitH2-L3-gf2 III 207 2 18 396 592 17 804 73 [4,4,4,4]

SDitH2-L5-gf2 V 272 2 19 864 800 19 064 104 [4,4,4,3]

Table 4: Proof system parameters of SD-in-the-Head-2, with key and signature sizes.

Parameter
Set

Proof System Parameters Sizes (Bytes)

τ κ wpow Topen B pk sk Sig. Avg Sig. Max

SDitH2-L1-gf2-short 11 11 9 107 16 70 163 3 705 3 705

SDitH2-L1-gf2-fast 16 8 2 101 16 70 163 4 484 4 484

SDitH2-L3-gf2-short 16 12 2 157 16 98 232 7 964 7 964

SDitH2-L3-gf2-fast 24 8 2 153 16 98 232 9 916 9 916

SDitH2-L5-gf2-short 21 12 6 216 16 132 307 14 121 14 121

SDitH2-L5-gf2-fast 32 8 2 207 16 132 307 17 540 17 540

4.4 Benchmarks

Table 5 and Table 6 provide benchmarks for the key generation, signature and verification
algorithms of SD-in-the-Head-2 on a laptop and a cloud server resectively. The provided timings
are median over 200 runs. For Category I, the signing and verification algorithms run in 2–3 ms
with the “fast” variant and in 6–9 ms with the “short” one.
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Table 5: Timings on a laptop with 12th Gen Intel Core i7-1260P (median after 200 runs).

KeyGen Sign Verif

SDitH2-L1-gf2-short 0.63 ms 6.73 ms 6.04 ms

SDitH2-L1-gf2-fast 0.74 ms 2.01 ms 1.79 ms

SDitH2-L3-gf2-short 3.02 ms 42.26 ms 39.83 ms

SDitH2-L3-gf2-fast 1.56 ms 6.36 ms 5.75 ms

SDitH2-L5-gf2-short 1.55 ms 60.48 ms 57.23 ms

SDitH2-L5-gf2-fast 1.82 ms 9.42 ms 8.70 ms

Table 6: Timings on a cloud server with AMD EPYC 7B13 @ 2.45GHZ (median after 200 runs).

KeyGen Sign Verif

SDitH2-L1-gf2-short 0.61ms 9.33ms 8.18ms

SDitH2-L1-gf2-fast 0.59ms 2.96ms 2.67ms

SDitH2-L3-gf2-short 1.71ms 44.54ms 41.38ms

SDitH2-L3-gf2-fast 1.61ms 7.86ms 7.11ms

SDitH2-L5-gf2-short 1.94ms 62.18ms 57.56ms

SDitH2-L5-gf2-fast 1.92ms 11.17ms 10.23ms
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5 Security

5.1 SD to RSD security reduction

We provide hereafter a security reduction from SD to RSD. Namely, any SD instance can be
solved using an RSD solver. The latter must be called a certain number of times which implies a
security gap between the two instances. This gap must be compensated by increasing the RSD
parameters. As explained in Section 4.1, this is precisely the approach we followed to select the
RSD parameters of SD-in-the-Head-2.

Theorem 5.1. Let F be a finite field. Let θ ∈ [1,∞). Let n, ksd, krsd, w be positive integers
such that ksd ≤ krsd ≤ n, w < n, w | n, and

krsd ≤ n− w · log2
( n
w

)
− log2 θ .

Let Arsd be an algorithm solving a random (F, n, krsd, w)-instance of the regular syndrome
decoding problem in time t with success probability εrsd. Then there exists an algorithm Asd

solving a random (F, n, ksd, w)-instance of the standard syndrome decoding problem in time t
with probability εsd, where

εsd ≥ e−1/θ ·
(
n
w

)w(
n
w

) · εrsd .
Remark 1. In the above theorem, for θ = 1, the constraint krsd ≤ n−w · log2

(
n
w

)
implies that

the regular SD instance (F, n, krsd, w) has density at most 1. Taking a greater θ implies a lower
density.

Proof. We adapt the proof of [FJR22] to our context. To prove the theorem, we build an
algorithm Asd to solve the traditional SD problem of parameters (n, k, w) using an algorithm
Arsd which solves the regular SD problem with the same parameters.

Algorithm Asd (on input an SD instance (H,y)):

1. Sample a permutation σ of {1, . . . , n}.
2. Permute the columns of H using σ to get Ĥ.

3. Remove the krsd − ksd last rows of Ĥ and the last

krsd − ksd coordinates of y to obtain Ĥtr and ytr.

3. Run Arsd on input (Ĥtr,ytr) to get x̂.

4. If x̂ = ⊥, return ⊥.
5. If Ĥx̂ ̸= y, return ⊥.
6. Permute the coordinates of x̂ using σ−1 to get x.

7. Return x.

The probability to transform an SD instance into a regular SD instance in Step 2 is
(
n
d

)w
/
(
n
w

)
.
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Thus we have

εsd := Pr[Asd(H,y) ̸= ⊥]
≥ Pr[Asd(H,y) ̸= ⊥ ∩ (Ĥ,y) is an RSD instance]

=

(
n
w

)w(
n
w

) · Pr[Asd(H,y) ̸= ⊥ | (Ĥ,y) is an RSD instance]

=

(
n
w

)w(
n
w

) · Pr[Arsd(Ĥtr,ytr) ̸= ⊥ and Ĥx̂ = y | (Ĥ,y) is an RSD instance]

=

(
n
w

)w(
n
w

) · Pr[Arsd(Ĥtr,ytr) ̸= ⊥ | (Ĥ,y) is an RSD instance]

· Pr[Ĥx̂ = y | (Ĥ,y) is an RSD instance,Arsd(Ĥtr,ytr) ̸= ⊥]

By definition we have:

Pr[Arsd(Ĥtr,ytr) ̸= ⊥ | (Ĥ,y) is an RSD instance] = εrsd .

On the other hand,

Pr[Ĥx̂ = y | (Ĥ,y) is an RSD instance,Arsd(Ĥtr,ytr) ̸= ⊥]
≥ Pr[(Ĥtr,ytr) has a single RSD solution | Arsd(Ĥtr,ytr) ̸= ⊥] .

Indeed, if (Ĥtr,ytr) has a single RSD solution, then given that (Ĥ,y) is an RSD instance, we
have that the right solution is returned by Arsd. Now, we heuristically have:

Pr[(Ĥtr,ytr) has a single RSD solution | Arsd(Ĥtr,ytr) ̸= ⊥] ≈
(
1− 1

nby

)nbx

,

which is the probability that no other x̂ lead to the same ytr, with nbx =
(
n
w

)w − 1 and
nby = 2n−krsd ≤ θ ·

(
n
w

)w
, implying (

1− 1

nby

)nbx

≈ e−1/θ .

Informally, the above result holds because an instance of the standard SD problem is an
instance of the regular syndrome decoding problem with probability

(
n
w

)w
/
(
n
w

)
. Moreover, a

standard syndrome decoding instance can be “randomized” and input to the regular adversary
as much as desired.
All the regular SD instances used in SD-in-the-Head are chosen such that the corresponding

standard SD instance achieves a security level which compensates the degradation. We stress
that this might be overly conservative.

5.2 Attacks against the SD problem

The binary SD problem has been studied for many years: the first attack was proposed by
Prange in the 60’s. Later further attacks were proposed by Stern and Dumer at the turning
of the 80’s and the 90’s. Many new attacks came out since 2010: Becker, Joux, May and
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Meurer [BJM+12] in 2012, then May and Ozerov [MO15] in 2015 and Both and May [BM18] in
2018. Eventually a cryptographic estimator was proposed by Esser and Bellini in 2022 [EB22].

While original attacks did not use much memory, recent attacks make extensive use of memory.
In this context, the cost of memory accesses (as a function of the memory size) is an essential
parameter [EB22]. This cost can be considered to be constant, logarithmic, cubic root or square
root. While a constant-time memory-access cost might seem very optimistic from the attacker
standpoint (and hence over conservative), a square root access might seem too pessimistic (hence
risky in terms of security). Unfortunately, there is no wide consensus on which cost is the most
practically relevant.2 It is interesting to notice that considering a cubic or square root memory-
access cost (which is theoretically meaningful) significantly limit the impact of recent attacks
whose efficiency relies on the availability of a large memory.

For our SD security estimates, we made the conservative choices of considering a logarithmic
memory-access cost and a memory size limited to 2143 for Category I, and 2160 for Categories
III and V (which roughly corresponds to the number of atoms on earth). To derive our concrete
parameters, we used the “Syndrome Decoding Estimator”, an open-source tool available at:
https://github.com/Crypto-TII/syndrome_decoding_estimator.

5.3 Unforgeability

The SD-in-the-Head signature scheme aims at providing unforgeability against chosen message
attacks (EUF-CMA). In this setting, the adversary is given a public key pk and they can ask
an oracle (called the signature oracle) to sign messages (msg1, . . . ,msgr) that they can select
at will. The goal of the adversary is to generate a pair (msg, σ) such that msg is not one of
requests to the signature oracle and such that σ is a valid signature of msg with respect to pk.

Our security statement is based on the following assumptions:

• SD hardness. Solving the considered SD instance is (ϵsd, t)-hard for some (ϵsd, t) which
are implicit functions of the security parameter λ. Formally, any adversary A on input a
random SD instance and running in time at most t has probability at most ϵsd to output
the solution of the input instance.

• Random Oracle Modem (ROM). Our security statement holds in the ROM where
the (extendable-output) hash function Hash is modelled as a random oracle.

• Ideal Cipher Model (ICM). Our security statement holds in the ICM where the block
cipher Enc is modelled as an ideal cipher.

Based on the ROM and the ICM, the EUF-CMA security of SD-in-the-Head holds from
the soundness and zero-knowledge properties of the underlying ZK-PoK (which are overviewed
in Section 2). The formal EUF-CMA security proof of SD-in-the-Head will be added to a
future version of the specification. It will heavily rely on usual techniques for MPC-in-the-Head
signature schemes with GGM trees.

2See, e.g., https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/xBky_FKFDgAJ

https://github.com/Crypto-TII/syndrome_decoding_estimator
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/xBky_FKFDgAJ
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6 Variants

In this section, we outline two possible variants of SD-in-the-Head-2, namely a variant using
the base field F256 and a variant using the Threshold-Computation-in-the-Head framework. We
might consider including these variants as formal instances of the scheme in the future.

6.1 The F256 variant

In the previous sections, we focused on the RSD problem over the binary field F2. We might

consider larger fields Fq, with q > 2. Given a matrix H ∈ F(n−k)×n
q and a syndrome vector

y ∈ Fn−k
q , the RSD problem over Fq consists in finding a vector x ∈ Fn

q such that

• x satisfies the linear relation y = Hx, and

• x is regular, meaning that it is the concatenation of w scaled elementary vectors e1, . . . , ew
of size n

w (i.e. vector with n
w − 1 coefficients 0 and one non-zero random coefficient).

The main difference when working on a larger field is that the non-zero coordinates of the
solution x are not necessary 1, they can be other non-zero values. In this context, the witness
wit should contain the value of those coordinates, together with their positions. To be able to
embed the tensor-product decomposition of the RSD solution over F2 while working over Fq,
we need to consider fields of characteristic 2, i.e. binary field extensions. The size of the secret
key (in bytes) is then

|sk| =
⌈ 1

8

(
2λ+ (n− k) · log2(q) + w ·

d∑
i=1

(µi − 1) + w · log2(q)︸ ︷︷ ︸
Values of the

non-zero coordinates

)⌉
,

while the public key has a total size (in bytes) of

|pk| =
⌈ 1

8
(λ+ (n− k) · log2(q))

⌉
.

The polynomial constraints that the witness should satisfy are very similar to those of the F2

case. The only difference comes from the fact that we need to scale each chunk ei by the non-
zero value. In practice, this can be done just after applying the mux tree at each chunk. The
size (in bits) of a signature is:

|σ| = 3λ → salt, hpiop

+ (τ − 1) · (|wit|2 + (d− 1)λ+ (λ+B)) → aux

+ (λ+B) → α′
plain

+ |wit|2 → ∆wit

+ d · λ → (α1, . . . , αd)

+ λ · Topen + τ · (2λ) + 32 → pdecom

with |wit|2 := ceil8(w · log2(q) + w ·
∑d

i=1(µi − 1)), where ceil8(x) = 8 · ⌈x/8⌉.
We exhibit some instances over F256 in Table 3 and in Table 4 for the different security

categories. Table 3 gives the syndrome decoding parameters which were obtained following the
approach described in Section 4.1 adapted to F256. Table 4 gives the proof system parameters



The Syndrome Decoding in the Head (SD-in-the-Head) Signature Scheme 43

(which are the same as for the F2 instances) and the associated sizes. We observe that we get
similar sizes than over F2.

While working on F2 can be considered as a more conservative choice than working on F256, the
latter has the main advantage to lead to a lighter scheme. In particular, the PIOP computation
is expected to be significantly faster over F256 as requiring much fewer large-field multiplications.
This is because the manipulated vectors are shorter while, on the other hand, the large field
remains the same (i.e. F2λ). Moreover, the uncompressed matrix H ′ is smaller over F256. For
instance, for Category I, we have 560 KB for H ′ on F2 versus 140 KB on F256.

Table 7: RSD parameters of SD-in-the-Head-2 for F256.

Parameter
Sets

NIST Security RSD Parameters Modeling

Category Bits q n (n− krsd) krsd w µ

SDitH2-L1-gf256 I 143 256 2 176 64 2 112 34 [4,4,4]

SDitH2-L3-gf256 III 207 256 3 200 96 3 104 50 [4,4,4]

SDitH2-L5-gf256 V 272 256 4 224 120 4 104 66 [4,4,4]

Table 8: Proof system parameters of SD-in-the-Head-2 over F256, with key and signature sizes.

Parameter
Set

Proof System Parameters Sizes (Bytes)

τ κ w Topen B pk sk Sig. Baseline (F2)

SDitH2-L1-gf256-short 11 11 9 107 16 80 169 3 661 3 705

SDitH2-L1-gf256-fast 16 8 2 101 16 80 169 4 420 4 484

SDitH2-L3-gf256-short 16 12 2 157 16 120 251 7 916 7 964

SDitH2-L3-gf256-fast 24 8 2 153 16 120 251 9 844 9 916

SDitH2-L5-gf256-short 21 12 6 216 16 152 325 14 079 14 121

SDitH2-L5-gf256-fast 32 8 2 207 16 152 325 17 476 17 540

6.2 The TCitH variant

As explained in Section 2.1, an alternative choice to the VOLE-in-the-Head framework [BBD+23]
is the Trheshold-Computation-in-the-Head (TCitH) framework [FR23a]. The TCitH-based com-
mitment scheme enables the prover/signer to open one evaluation among only N , while the
computational complexity of the commitment procedure is linear in N . While the PIOP sound-
ness error is d/N τ for VOLEitH, it is (d/N)τ for TCitH with τ parallel repetitions, which means
that we must ensure (d/N)τ · 2−wpow ≤ 2−λ to achieve a λ-bit security. The size (in bits) of a
TCitH-based SD-in-the-Head-2 signature is:

|σ| = 3λ → salt, hpiop

+ τ · |wit|2 → ∆wit

+ τ · (d− 1) · ceilκ(λ) → (α2, . . . , αd)

+ λ · Topen + τ · (2λ) + 32 → pdecom
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with |wit|2 := ceil8(w ·
∑d

i=1(µi − 1)), where ceiln(x) = n · ⌈x/n⌉.
Table 9 gives the TCitH-based proof system parameters and the associated signature sizes.

Let us stress that the key generation is the same in both approaches and so the key sizes are
those in Table 4. We can observe that the signature sizes are larger when using the TCitH
framework. This comes from the required increase of τ to maintain an equivalent security. This
is particularly true for SD-in-the-Head-2, for which the RSD modeling leads to degree-4 (i.e.
d = 4) constraints, while most of the schemes in the literature consider only degree-2. This size
increasing is partly compensated by the fact that TCitH does not include the communication
cost induced by the VOLEitH consistency check.
While it leads to larger signatures, the main advantage of the TCitH variant is to be struc-

turally simpler: it does not have consistency check, it is derived from a 5-round interactive
protocol (while the VOLEitH framework gives 7-round protocol), and it does not require to
work in a large field extension.

Table 9: Proof system parameters of the TCitH-based variant of SD-in-the-Head-2, with signa-
ture sizes. Key sizes are similar to our main VOLEitH-based instances.

Parameter
Set

Proof System Parameters Sizes (Bytes)

τ κ wpow Topen Sig. Baseline (VOLEitH)

SDitH2-TCitH-L1-gf2-short 14 11 2 125 4 271 3 705 (-13%)

SDitH2-TCitH-L1-gf2-fast 21 8 2 135 5 509 4 484 (-19%)

SDitH2-TCitH-L3-gf2-short 19 12 2 185 8 426 7 964 (-5%)

SDitH2-TCitH-L3-gf2-fast 31 8 6 212 11 374 9 916 (-13%)

SDitH2-TCitH-L5-gf2-short 25 12 6 265 15 618 14 121 (-10%)

SDitH2-TCitH-L5-gf2-fast 42 8 4 280 19 968 17 540 (-12%)
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7 Advantages and limitations

In this section we describe some advantages and limitations of the SD-in-the-Head signature
scheme. The bottom line is that it provides both conservative security and relatively small
signatures compared to current PQC standards.

7.1 Advantages of SD-in-the-Head

Conservative hardness assumption. Our signature scheme is based on the presumably hard-
est problem in code-based cryptography: the unstructured binary Syndrome Decoding (SD)
problem for random linear codes. This problem is known to be NP-hard and the cryptanalysis
state-of-the-art has been stable and well-established for decades.

Adaptive and tunable parameters. MPCitH enables us to tailor parameters, in particular
the size of GGM trees (i.e., the size of the small evaluation domain), meaning that we can
provide a variety of parameter sets tailored to different use cases similarly to SPHINCS+.
This is illustrated by our ‘fast’ and ‘short’ parameter sets that provide two different signature
sizes/performance trade-offs. In addition, the size of the signature is composed of two parts:
a part related to GGM trees and a part related to the SD instance. The latter part is not
the bottleneck so that increasing the size of the SD parameters (and hence the associated SD
security) only has a moderate impact on the global signature size.

Small code-based signatures. The SD-in-the-Head signature scheme achieves among the small-
est code-based signatures to-date, which does not come at the cost of a large public key.

Small key sizes. Both the secret key and public key sizes are much smaller in comparison to
the lattice-based signature standards, and compete with SHL-DSA. In particular, the public
key, which is often transported with the signature (e.g., certificates in TLS), is between 120-240
bytes across all security levels for both variants.

Size of public key and signature. SD-in-the-Head offers competitive signature sizes along
with very small public keys, which yields a competitive signature + public key size. For NIST
security level I, the sum of the signature and public key sizes of SD-in-the-Head gives 3.8 kB,
which is comparable or smaller than the post-quantum NIST standards ML-DSA (Dillitium)
and SLH-DSA (SPHINCS+) with 3.7 kB and 7.8 kB respectively.

7.2 Limitations of SD-in-the-Head

Quadratic growth w.r.t. the security level. As other MPCitH schemes, or, more generally,
as other schemes applying the Fiat-Shamir transform to a parallelly repeated ZK-PoK with
non-negligible soundness error, SD-in-the-Head suffers a quadratic growth of its signature size.

Efficiency. MPCitH-like schemes require the generation of lots of pseudorandom objects, which
makes them slow in comparison to other schemes such as the NIST post-quantum standard ML-
DSA. Nonetheless, the efficiency of SD-in-the-Head is competitive when compared with many
other post-quantum signature schemes.
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Low-cost devices and embedded systems. SD-in-the-Head might be particularly heavy for
low-cost devices such as smart cards or embedded systems, although it has the potential to
perform well on hardware as being highly parallelizable.
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